
Programming Language

劉和師

2024/05/24



C語言

2

 它是現在一些熱門語言的「阿公」，經久不衰，
許多語言都是由它延伸發展而來的。

 它的適用範圍廣，包含軟體工程師、硬體工程
師都會用到。

 如果你熟悉了C語言，那學習其它語言都不是
問題。

 它不適合寫視窗程式，但用來控制裝置很方便。
如果你要寫視窗程式可以考慮微軟的C#或
Python的PyQt6套件。



編輯環境建立及操作

3

建議的簡易編譯環境(一)：
 Dev C++：

https://www.bloodshed.net/


編輯環境建立及操作

4

建議的簡易編譯環境(二)：
 CodeBlocks：

https://www.codeblocks.org/


編輯環境建立及操作

5

關於編譯環境：
 你可以在谷哥大神找到這些免費軟體的下載。

 在學習的過程中，你可以使用任一個編譯環境來
執行。

 微軟的Visual Studio是一個很不錯功能又強
的IDE(整合發展環境)，但對現階段的你來說太
龐大，不需要。

 安裝過程請看老師上課安裝。

 課程內容的程式請一定要親自去試試。



休息一下~

6

去準備編譯及執行的環境~



C語言架構

7

 C語言的架構
 是由一個個模組所組成，包含:

 1.前端處理程式

 2.全域變數

 3.主程式模組

 4.函數式模組

 C語言的概念是以函數(Function)為主，連
主程式main( )都是一個函數。



C語言架構

8

#include  標頭檔 //引進所需要之庫存函數
:

#define   識別字或常數 //增加可讀性
:

全域變數宣告
:

main( ) //程式進入點,由此開始執行
{

主程式區域變數宣告
敘述…

}

functions( )
{

函數區域變數宣告

敘述…
}

前端處理程式

主程式模組,

只能有一個

函數模組,

可以有很多個



C語言架構

9

識別字(Identifiers)：

 程式中所用到的各種名稱、如變數名稱、常數名
稱、函數名稱等。

 要自己取名字，不可以用中文。

 最好是和其相關的有意義的名字。



C語言架構

10

識別字命名規則：

 第一個字一定是英文字母或底線字元“_ ”。

 其他字元可以是英文字母、數字、底線字元或“$”符號。

 長度不可超過255個字。

 大小寫字母所代表意義不同(即大小寫是嚴格區分的)。

 關鍵字或庫存函數不可當識別字。

 一些例子： 正確的 錯誤的 說 明

abc 3abc 第一個字母不可為數字

_ab for 不可使用關鍵字

A12 A#12 不可使用特殊符號



C語言架構

11

識別字命名風格：
 當識別字需要好幾個單字來表達時，可採用：

 加底線，例如：your_name、get_score。
用底線隔開幾個單字。

 駝峰式，例如：yourName、getScore。(推薦)
將單字首予以大寫來區分。



C語言架構

12

關鍵字(Key words)：
 或稱保留字，是具有特殊意義的識別字。

 程式中不可以使用關鍵字當作變數名稱、常數名
稱或函數名稱。

 關鍵字在不同的Compiler或不同的版本中可能
有差異。



C語言架構

13

 C語言常用關鍵字：



註解

14

 一個好的程式會有適當的註解。

 註解是給人看的，編譯器會予以忽略。
 單行註解：

// one line comment

 多行註解：

/* a comment */ 或

/*------------------------------

another comment 

------------------------------*/

 適當的空白行可以有助程式閱讀，編譯器會忽略
空白行及空白字元。



常數與變數

 變數：代表一個可存放資料的記憶體位置，
是程式中不可或缺的部分。

 常數：程式執行時的各項資料的值。

15

A = 10

某個記憶體位址

常數變數 存入

存入



常數與變數

16

變數：
 Ex: 敘述 (把10存到A裡面)

 實際情況:

A = 10;

… 10 …記憶體內容

記憶體位址 …     025D     025E   025F      … 

(不能自己指定，由OS分配)

變數名稱 A

注意：C語言每一道敘述後面都要加上一個分號";"當結尾，不可遺漏。

你看到的

OS看到的



常數與變數

17

：
：

10

5

：
：

記憶體位址

0x2E3

0x2E4

0x2E5

:

:

A

B

變數名稱

A = 10;
B = 5;

指令

實際的記憶體位址由系統
分配，我們不需要關心。



常數與變數

18

：
：

10 5

：
：

記憶體位址

0x2E3

0x2E4

0x2E5

:

:

A

變數名稱

A = 10;
A = 5;

指令

第二道指令會取代原先
A的內容。



常數與變數

19

在程式語言中，一個變數即代表記憶體中一
個儲存空間，佔一至數byte不等，依指定
之資料型態而定。

在整個程式執行期間，變數名稱是不變的，
但其所儲存的值可能會一直改變。

所佔用之記憶體位置由作業系統
(Operating System)決定。



資料型別

20

整數：不帶小數之數，有10、8、16、2進
制四種表示法。

進制 正數 負數

10 20 -20

8 024 -020

16 0x14 -0x14

2 0b01100001 沒有

註：0為數字零,不是字母O



資料型別

21

浮點數：帶小數點的數。
 如: 123.4,   1.234e+02(表示1.234×102)

字元：括在一對單引號之間的字元。
 如：'a'。

字串：括在一對雙引號之間的一串字元。
 如："My name is Orion"。



資料型別

22

字串：
 其長度在C語言中沒有限制(僅受限於記憶體大
小)。

 字串的最後會自動加上一個Null byte(空字元),
以表示字串的結束。

 一個英數字佔一個byte，中文兩個byte。

(現在有許多編碼方式，ASCII、BIG5、UTF8、

UTF16...，一般來說一個中文兩個byte，如果
必要的話還是要自己確定一下)



資料型別

23

例如字串"ABCabc"在記憶體中的情形：

由n個字元組成的字串佔用n+1個byte的記
憶體。

… 65 66 67 97 98 99 0 …

‘A’    ‘B’   ‘C’    ‘a’    ‘b’    ‘c’    Null

ASCII Code



變數及資料型別

24

 資料型別及表示範圍參考： (依作業系統會稍有不同)



休息一下~

25



運算式與運算符號

運算子(Operator)與運算元(Operand)

26

Expression
運算式

運算子

運算元



運算式與運算符號

27

一個運算式是由運算子及運算元構成的：

變數 = B + C;

運算子(運算符號)

運算元(要運算的東西)



運算式與運算符號

28

算術運算：

 注意：整數除整數仍然會得到整數，不會有小數。



運算式與運算符號

29

複合運算：

 複合運算可以簡化運算式。



運算式與運算符號

30

遞增/遞減運算：

 可以簡化運算式，這個運算在C語言很常用。



運算式與運算符號

31

關係運算：

 「=」是指定運算，「==」是關係運算。



運算式與運算符號

32

邏輯運算：

 真值表：



運算式與運算符號

33

運算符號的優先序：



運算式與運算符號

34

位元運算：

 依真值表位元對位元運算，沒有進位或借位的問
題。

 此類運算我們比較少用到，但8051單晶片的C常
用到。



運算式與運算符號

35

條件運算子：
 格式：

 說明：若關係運算式之值為真，則取運算式1  

之值，否則取運算式2之值。

 例：比較a,b之值，較大者指定給Z。

(關係運算式)?運算式1:運算式2;

Z = (a > b) ? a : b ;

真

假



運算式與運算符號

36

注意C的三種"除法"運算：
 10 / 3.0 = 3.333333 (有一邊是浮點數)

 10 / 3 = 3 (兩邊都是整數)

 10 % 3 = 1 (求餘數)



型別轉換

37

 當兩個不同型態的運算元作運算時，C會根據
一些轉換法則將兩個運算元轉換成相同型態，
原則為:
 所有字元型態(char)和短整數(int)皆轉換為int。

 所有浮點型態(float)皆轉換為double型態。

 一但有double運算元其它運算元皆轉換為double。

 一但有long運算元其它運算元皆轉換為long。

 一但有long double運算元其它運算元皆轉換為
long double。

 一但有unsigned運算元其它運算元皆轉換為
unsigned。



型別轉換

38

 C語言提供一個型態轉換運算符號，用以強
迫改變運算元之型態，格式為:

 Ex:

x = 10/3  x得到3

x = (float)10/3  x得到3.333333

一個良好的程式應避免讓運算式自行轉換型
態，才能確保程式的正確與效率。

(型態)運算元;



休息一下~

39



基本輸出入函式

40

主函式main()架構：
 格式一：

 格式二：

void main(void)
{

敘述;
：

}

int main(int argc, char *argv[])
{

敘述;
：
return 0;

}

沒有命令列
輸入參數

程式結束時傳回
給作業系統的型
態。void表示沒
有傳回值。

程式結束時傳
回一個整數給
作業系統，這
是比較好的做
法。

取得命令列輸
入參數個數及
其值

傳回一個值，讓作業系
統可以知道程式是否正
常結束



基本輸出入函式

41

輸出函式printf()：
 格式：

 單純輸出一個字串。

 或：

 依指定的格式輸出。

printf("格式字串",引數1,引數2, ...);

printf("字串");



基本輸出入函式

42

輸出函式printf()：
 例：

 輸出結果：

#include <stdio.h> //引入標準輸出入函式庫
#include <stdlib.h> //引入標準函式庫

void main(void) //void表示沒有東西
{

printf("Hello World!"); //不要忘了結尾分號
}



基本輸出入函式

43

在Dev C++和CodeBlocks環境，輸出結果
會出現在一個命令列視窗(DOS視窗)，並會
自動停止，等你按Enter後返回。

其它環境若輸出視窗一閃而過，就要加上一
行讓程式暫停的指令，以便檢視結果。

暫停指令：

system("PAUSE");



基本輸出入函式

44

輸出函式printf()：
 例：

 輸出結果：

#include <stdio.h>
#include <stdlib.h>
void main(void)
{

int x = 10;   //宣告變數並指定初值
int y = 3;
float z;
z = (float)x / y; //依序將引數交給格式字串顯示
printf("%d / %d = %f", x, y, z);

}



基本輸出指令

 printf()的%格式化的控制方式：

 Ex： 表示總共留5格，小數佔用2格。

(小數點固定占用1格)

 Ex： 表示總共留5格，向右靠齊。

 Ex： 表示總共留5格，向左靠齊。

45

%5.2f

3 . 1 4

%5d

%-5d

(若未填滿則留出空白)



基本輸出入函式

46

 printf()的格式化控制範例：

#include <stdio.h>
#include <stdlib.h>

int main(void){
printf("|%f|\n", 10/3.0); //依內定長度顯示，向右靠齊
printf("|%5.2f|\n", 10/3.0); //指定顯示格式，小數2位
printf("|%5d|\n", 10/3); //指定寬度，靠右對齊
printf("|%-5d|\n", 10%3); //指定寬度，靠左對齊
return 0;

}



基本輸出入函式

47

 輸出格式字串：



基本輸出入函式

48

 跳脫字元：有特殊意義的字元組合。



基本輸出入函式

49

輸入函式scanf()：
 格式：

 依格式字串指定的格式取得輸入，並依序放入變數。

 例：

 輸入： (中間用空白隔開)

scanf("格式字串", &變數1, &變數2, ...);

scanf("%d %f", &x, &y);

2 3.14 



基本輸出入函式

50

輸入函式scanf()：
 例：

 執行結果：

#include <stdio.h>
#include <stdlib.h>
void main(void)
{

int x;
float y, z;
printf("請輸入一個整數及一個浮點數："); //提示訊息
scanf("%d %f",&x, &y);
z = x / y;
printf("%d / %.2f = %f", x, y, z);

}



基本輸出入函式

51

 輸出入格式字串：

 輸入間隔字元：



休息一下~

52



運算式與輸出入練習

53

練習：
#include <stdio.h>

#include <stdlib.h>

void main(void)

{

int x;

x = -6 + 3 % 4 - 3;

printf("%d\n", x);

}

執行結果: -6

Ans:

x=-6+3%4-3

=(-6)+3-3

=-3-3

=-6



運算式與輸出入練習

54

 Ex:設 int x, y; 

 (a) y=x=(2+3)/4;  結果：x=1, y=1

 x=(2+3)/4 =5/4 =1,  y=x

 (b) y=3+2*(x=7/2);結果：x=3, y=9

 x=7/2 =3, y=3+2*(x=7/2) =3+2*3 =9

 (c) x=(int)3.8+3.3; 結果：x=6

 x=3+3.3 =6.3 =6(x為int)

 (d) x=3/5*22.0; 結果：x=0

 x=0*22.0 =0

 (e) x=22.0*3/5; 結果：x=13

 x=66.0/5 = 13

注意運算
優先順序



運算式與輸出入練習

55

練習：

Ans:

x = y == 2

判斷y是否等於2

y = 3 ≠ 2,故傳回0

x=0

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int x, y=3;
x = y == 2;
printf("%d\n",x);

}

執行結果：0 (假)



運算式與輸出入練習

56

練習：
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int x, y=3, z;
x = y <= (z = 2);
printf("%d\n",x);

}

執行結果：0

Ans:

(y=3) <= (z=2)

不成立,故傳回0

x = 0



運算式與輸出入練習

57

練習：
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int x=3, y=2, z=1;
x = x && y || z;
printf("%d\n",x);

}

執行結果：1

Ans:

因為x,y皆不為0

x = x && y || z

=(True) && (True) || z

=(True) || z

有一者為真即不再做||運算

= True = 1



運算式與輸出入練習

58

練習：
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int x=2, y=0, z=1;
x = !x || y && z;
printf("%d\n",x);

}

執行結果：0

Ans:

x = !x || y && z

= 0 || (0 && 1)

= 0 || 0

= 0



運算式與輸出入練習

59

 C常用的++(加1運算子)及--(減1運算子)。

 ++與--可放在變數之前，也可放在變數之
後，可分成：
 前置運算子：

置於變數前,例如： ++n,   --n

 後置運算子：

置於變數後,例如： n++,   n--



運算式與輸出入練習

60

前置運算子：
(a) x = ++n 可寫成

先將n+1再指定給x
Ex:若執行前x=2,n=6,執行x=++n之後

x=7, n=7

(b) y = --n 可寫成
先將n-1再指定給y
Ex:若執行前y=2,n=6,執行y=--n之後

y=5, n=5

{n=n+1; x=n;}

{n=n-1; y=n;}



運算式與輸出入練習

61

後置運算子：
(a) x = n++ 可寫成

先將n給x,再將n值加1
Ex:若執行前x=2,n=6,執行x=n++之後

x=6, n=7

(b) y = n-- 可寫成
先將n給y,再將n值減1
Ex:若執行前y=2,n=6,執行y=n--之後

y=6, n=5

{x=n; n=n+1;}

{y=n; n=n-1;}



運算式與輸出入練習

62

練習:

若 w=5, x=8, y=11, z=13  則

a = w-- + --x + y++ - ++z ?

Ans:

a = (5--)+(--8)+(11++)-(++13)

= 5   +   7 + 11   - 14

= 9

執行後：a=9, w=4, x=7, y=12, z=14



運算式與輸出入練習

63

 練習:

 若 a=4, b=6 則

x = 39/-++a+-29%b-- ?

Ans:

x = 39 / (-(++a)) + ( -(29) % (b--))

= 39 /     -5  +    -29  %  6

=    -7        +        -5

=  -12



運算式與輸出入練習

64

練習(位元運算)：

 2 * 5 + 6 | 15 – 7 ^ 16 * 9 % 5

 Ans:

=  16    | 8   ^ 4

=  16    | 12

=       28
*注意運算優先順序

0000 1000     8

^ XOR)    0000 0100     4

0000 1100   12

| OR)    0001 0000   16

0001 1100   28



運算式與輸出入練習

65

範例：

#include <stdio.h>
#include <stdlib.h>

void main(void)
{
int i=24, j=16, p, q;
p = i >> 2;
q = j << 2;
printf("p=%d,q=%d\n",p,q);

}

執行結果：p=6, q=64

i= 0001 1000  24

i>>2= 0000 011000 6

j=    0001 0000   16

j<<2=000100 0000 64

移除

移除

填入

填入



運算式與輸出入練習

66

範例：
#include <stdio.h>

#include <stdlib.h>

void main(void)

{

int x=2, y=5, z;

z=(x < y)? ++x : --y ;

printf("%d\n",z);

}

執行結果：3 

x < y 成立,

故取 ++x 之值



休息一下~

67



控制結構

68

 1.順序結構(sequence structure)

 2.選擇結構(selection structure)
 if – else

 switch

 3.重複結構(loop structure)
 for

 while

 do - while



選擇結構：if – else 敘述

69

格式一：

 若只有一行敘述，{}可省略。

if(運算式)
{

敘述;
：
：

}

運算式

敘述

FalseTrue



選擇結構：if – else 敘述

70

格式二：

 若只有一行敘述，{}可省略。

if(運算式)
{

敘述1;
：

}
else
{

敘述2;
：

}

運算式

敘述1 敘述2

FalseTrue



選擇結構：if – else 敘述

71

格式三：

if(運算式1){
敘述1;
：

}else if(運算式2){
敘述2;
：

}else if(運算式n){
敘述n;
：

}else{
敘述;

}

運算式1 ? 敘述1

運算式2 ?

運算式n ? 敘述n

敘述2

敘述

T

T

T

F

F

F



選擇結構：if – else 敘述

72

範例：輸入一整數，若大於0則印出"這是正數
"的訊息。
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int num; //宣告變數
printf("請輸入數值："); //提示訊息
scanf("%d",&num); //請求輸入

if( num > 0 )
printf("這是正數");

}

之後為節省畫面空間，這
兩行會省略，請實作程式
時自己加進去。



選擇結構：if – else 敘述

73

範例：輸入一整數，若大於0則印出"這是正數
"的訊息，否則印出"這不是正數"。

void main(void)
{

int num; //宣告變數
printf("請輸入數值："); //提示訊息
scanf("%d",&num); //請求輸入

if( num > 0 )
printf("這是正數");

else
printf("這不是正數");

}



選擇結構：if – else 敘述

74

 範例：演唱會門票一張$100元，一次購買五張(含)以上打九折，
五張以下不打折，計算出總價。

void main(void) {
int price=100, count=0;  //宣告變數並指定初值

printf("每張票定價100元\n"); //顯示提示訊息
printf("請輸入購買票數(1張以上):");
scanf("%d",&count); //等待輸入

if(count>=5) { //判斷是否五張以上
printf("購買五張以上，打九折優惠!!\n"); 
printf("總價為%f\n", count*price*0.9);

}

if(count>=1 && count<=4) //介於1~4張之間
printf("總價為%d\n", count*price);       

if(count<=0) //要判斷每一種可能發生的狀況
printf("很抱歉，您未輸入正確票數\n");

}



選擇結構：if – else 敘述

75

巢狀結構：if裡面還有if。

格式：

if(運算式1)
{

if(運算式2)
敘述1;
：

}
else

敘述2;

運算式1

運算式2敘述2

敘述1

TrueFalse

TrueFalse



選擇結構：if – else 敘述

76

 練習：找出a、b、c三數中的最大值，存入變數max。
 流程圖：

a>=b?

a>=c?b>=c?

max=c max=b max=c max=a

T

F T T

F

F



選擇結構：if – else 敘述

77

 範例：找出a、b、c三數中的最大值，存入變數max。
 程式1:   程式2:

if(a >= b)
if(a >= c)

max=a;
else

max=c;
else

if(b >= c)
max=b;

else
max=c;

max = (a>=b) ? a : b;
max = (max>c) ? max : c;



選擇結構：if – else 敘述

78

 範例：請使用者輸入三個整數，印出最大值。
void main(void) {

int a, b, c, max;
printf("請輸入三個整數(以空白隔開)：");
scanf("%d %d %d", &a, &b, &c);

if(a >= b)
if(a >= c)

max=a;
else

max=c;
else

if(b >= c)
max=b;

else
max=c;

printf("最大值是：%d\n", max);
}



選擇結構：if – else 敘述

79

善用條件運算子：
 判斷一輸入為正數、零或負數。

int main(void){
int n;
printf("請輸入一整數:");
scanf("%d", &n);

printf("%s",(n>0)?"正數":((n==0)?"零":"負數"));

return 0;
}



多重選擇結構：if 敘述

80

 寫一程式判斷成績等第。90~100分為優等，80~89分為甲等，
70~79為乙等，60~69分為丙等，60分以下為丁等。

int main(void){
int n;
printf("請輸入成績:");
scanf("%d", &n);
if(n>=90 && n<=100)

printf("優等");
else if(n>=80 && n<=89)

printf("甲等");
else if(n>=70 && n<=79)

printf("乙等");
else if(n>=60 && n<=69)

printf("丙等");
else if(n>=0 && n<=59)

printf("丁等");
else

printf("不正確的分數");
return 0;

}

一個使用if-else的
多重選擇的範例。



多重選擇結構：switch 敘述

81

 在進行多重選擇
時，過多的if-
else常會造成困
擾，可用switch
敘述取代。

 格式:

switch(運算式)
{

case 常數1:
敘述1; 
break;

case 常數2:
敘述2;
break;

:
case 常數n:
敘述n;
break;

default :
敘述d; 

}

運算式的結果其值
必須為整數或字元。

而case後面的常數
必須為整數或字元。

default敘述可省略



多重選擇結構：switch 敘述

82

 switch敘述執行過程：
 先求出運算式的值，然後與case後的常數進行
比對。

 若找到相同的值，則執行其後面的敘述，執行過
後底下的每一個case內之敘述也將陸續被執行，
除非有break敘述才會結束。

 若找不到吻合的常數值，則：
 有default則執行default後的敘述。

 沒有default則跳出switch敘述。

 繼續switch之後的下一個敘述。



多重選擇結構：switch 敘述

83

 switch敘述執行過程：

運算式之值
=常數1?

敘述1

運算式之值
=常數2?

運算式之值
=常數n?

敘述n

敘述2

敘述d

T

T

T

F

F

F

default敘述可有可無

一但進入敘述執行,

則以下的所有敘述
都將被執行到



多重選擇結構：switch 敘述

84

 範例：

void main(void)
{

char ch;
printf("請輸入一個字母(A/B/C):");
scanf("%c",&ch);

switch(ch)
{

case 'A': printf("It is an Apple\n");
case 'B': printf("It is a Bed\n");
case 'C': printf("It is a Cat\n");
default: printf("輸入錯誤\n");

}
}



多重選擇結構：switch 敘述

85

 加入break敘述：

運算式之值
=常數1?

敘述1

運算式之值
=常數2?

運算式之值
=常數n?

敘述n

敘述2

敘述d

T

T

T

F

F

F

default敘述可有可無,

由於是最後一道敘述,

故不需加break

一但有break敘述,執
行完後即離開switch,

不再往下執行

break;

break;

break;



多重選擇結構：switch 敘述

86

 範例：加上break。
void main(void) {

char ch;
printf("請輸入一個字母(A/B/C):");
scanf("%c",&ch);
switch(ch)
{

case 'A': 
printf("It is an Apple\n"); break;

case 'B': 
printf("It is a Bed\n"); break;

case 'C': 
printf("It is a Cat\n"); break;

default: printf("輸入錯誤\n");
}

}



多重選擇結構：switch 敘述

87

 依輸入判斷是第幾季：
void main(void) {

int m;
printf("請輸入月份:");
scanf("%d",&m);
switch(m) {

case 1:
case 2:
case 3: printf("第一季\n"); break; 
case 4:
case 5:
case 6: printf("第二季\n"); break; 
case 7:
case 8:
case 9: printf("第三季\n"); break; 
case 10:
case 11:
case 12: printf("第四季\n"); break;
default: printf("輸入錯誤\n");

}
}

case後面只能是
整數或字元



休息一下~

88



重複結構：for 迴圈

89

迴圈：當程式需要重覆執行某一段落時。

格式：

for(運算式1; 運算式2; 運算式3)
{

迴圈主體;
：

}

起始設定及起始值

迴圈主體只有一行時可省略 { }

終止條件測試 增/減量



重複結構：for 迴圈

90

 for迴圈流程圖：
進入迴圈

運算式1

運算式3

迴圈主體

運算式2=真? 離開迴圈

真

假

初值設定

增/減量
終止條件



重複結構：for 迴圈

91

範例：在螢幕上列印5次"C is powerful"。

void main(void)
{

int n;

for(n=0; n<5; n++)
printf("%d C is powerful\n", n);

}



重複結構：for 迴圈

92

下列迴圈各執行幾次?

 for(i=0; i<10; i++)

Ans: i=0,1,2,…9   計10次(當i=10時跳出迴圈)

 for(j=10; j>0; j-=3)

Ans: j=10,7,4,1   計4次

 for(k=0;  ; k++)

Ans: 可接受無終止條件的情況,為無盡迴圈

 for(m=0; m<10;   )

Ans: 可接受無增/減量,為無盡迴圈

 for(m=1,n=10; n>10; m+=3,n-=2)

Ans: 由n控制迴圈次數，n=10,8,6,4,2  計5次。

m無控制上的意義，但會隨迴圈變更其值。



重複結構：for 迴圈

93

 範例：寫一程式累加至使用者指定之數目。

void main(void)
{

int s=0,n;

printf("請輸入一個整數:");
scanf("%d", &n);

for(int i=1; i<=n; i++)
s += i;

printf("Sum = %d\n", s);
}

如果i只在for迴圈用到，
可以在for裡設定初值時
宣告，迴圈結束即丟棄。



重複結構：for 迴圈

94

 範例：寫一程式印出字元'a'到'g'的ASCII值

void main(void)
{

char ch;
for(ch='a'; ch<='g'; ch++)

printf("%c %d\n",ch, ch);
}

同一個變數,

第一次以文字方式印出,

第二次以數值方式印出



重複結構：for 迴圈

95

 範例：寫一程式印出迴圈變數的變化過程。

void main(void)
{

int i,j;
printf("i j\n----\n");
for(i=0; i<3; i++)
{

for(j=1; j<=3; j++)
printf("%d  %d\n", i, j);

printf("----\n");
}

}



重複結構：for 迴圈

96

 範例：經典的9X9乘法表來了~
void main(void)
{

for(int i=1; i<=9; i++)
{

for(int j=1; j<=9; j++)
printf("%d*%d=%2d ", i, j, i*j);

printf("\n");
}

}



重複結構：while 迴圈

97

若不確定要重複執行幾次，可使用while指令。
格式：

執行步驟：
Step 1: 測試運算式的值。

Step 2: 若結果為真執行迴圈主體回到Step1。

若結果為假跳出迴圈。

while( 運算式 )
{

迴圈主體;
：

}



重複結構：while 迴圈

98

 while迴圈流程圖：

進入迴圈

初值設定

迴圈主體

運算式=真? 離開迴圈

T

F

在進入迴圈之前做一些
必要的初值設定



重複結構：while 迴圈

99

範例：在螢幕上列印5次"C is powerful"。
void main(void)
{

int n=0; //設定初值
while( n<5 ) //結束條件
{

printf("%d C is powerful\n", n);
n++; //增減量

}
}



重複結構：while 迴圈

100

 範例：由鍵盤輸入n個數值，直到輸入999為止(999不算)，
將輸入之數值加總印出。
void main(void)
{

int x=0, sum=0;

//x=999就會結束迴圈
while( x!=999 )
{

sum += x;
printf("請輸入數值：");
scanf("%d", &x);

}
printf("Sum = %d", sum);

}



重複結構：while 迴圈

101

 while的無盡迴圈：

while( 1 )
{

迴圈主體;
：

}

非零的常數恆為真，
故while迴圈將無止
境的循環執行下去

(看來奇怪，卻還蠻常用的)



重複結構：while 迴圈

102

 範例：輸入一整數並判斷是奇數還是偶數。

void main(void)
{

int num;
while( 1 ) //無盡迴圈
{

printf("請輸入一整數:");
scanf("%d",&num);
if( num % 2 == 0 )

printf("%d 是偶數\n", num);
else

printf("%d 是奇數\n", num);
}

}

在此處等待輸入，
程式不會結束。
(可用Ctrl+C中斷程式)



重複結構：do - while迴圈

103

先執行一次迴圈主體，再判斷要不要重複。
格式：

執行步驟：
Step 1: 執行迴圈主體(至少執行一次)。
Step 2：測試條件運算式的值。
Step 3: 若為真回到Step1。

若為假跳出迴圈。

do
{

迴圈主體;
：

} while( 運算式 );

注意結尾要有
分號



重複結構：do - while迴圈

104

 while迴圈流程圖：

進入迴圈

初值設定

迴圈主體

運算式=真? 離開迴圈
T F

在進入迴圈之前做一些
必要的初值設定



重複結構：do - while迴圈

105

範例：在螢幕上列印5次"C is powerful"。

void main(void)
{

int n=0;
do
{

printf("%d C is powerful\n",n);
n++;

}while(n<5);
}

重要，不要漏掉了!



重複結構：do - while迴圈

106

 範例：由鍵盤輸入n個數值，直到輸入999為止(999不算)，
將輸入之數值加總印出。
void main(void)
{

int x=0, sum=0;

//x=999就會結束迴圈
do
{

sum += x;
printf("請輸入數值：");
scanf("%d", &x);

} while( x!=999 );
printf("Sum = %d", sum);

}



重複結構：do - while迴圈

107

我們做了三次印出"C is powerful"，請
比較有何不同？

for

while

do while



continue與break敘述

108

與重複結構配合的指令：

 break敘述：用以跳出所在的那層迴圈(也用
於結束switch敘述)。

 continue敘述：當執行到continue敘述時,
程式會略過迴圈中其餘的部分而直接回到該
層迴圈的起始處。



continue與break敘述

109

範例：輸入一整數，印出其中的奇數。
void main(void)
{

int num;
printf("請輸入一整數:");
scanf("%d", &num);
for(int i=0; i<=num; i++)
{

if(i%2 == 0) continue;
printf("%d 是奇數\n", i);

}
}



continue與break敘述

110

範例：追蹤下列程式，最後變數cnt為何值？
void main(void)
{

int i,j,cnt=0;
printf("i j cnt\n------\n");
for(i=1;i<=4;i++)
{

for(j=1;j<=5;j++)
{

if(i==3) continue;
if(j>3) break;
cnt++;
printf("%d %d  %d\n",i,j,cnt);

}
}

}



continue與break敘述

111

注意continue在while指令與do...while
指令返回位置稍有不同：

while(運算式)
{

：
continue;
：

}

do
{

：
continue;
：

}while(運算式);



休息一下~

112



函式(Function)

113

函式(Function)，亦稱函數。

分為：
 內建函式：C語言提供可立即呼叫使用的函式。

 自訂函式：自己寫的函式。

函式的好處是可以讓程式簡潔，易於維護。

呼叫主
程
式

函
式

返回

傳入參數

傳回值



內建函式

114

 C語言編譯器提供的已定義好的函式集合稱
為「標準函式庫」，像最常用的printf()、
scanf()等，使用時用#inlude命令引入即
可。

因為太常用，所以我們固定會引入這兩項：

有些編譯器你若不寫這兩行它也會自動引入。

#include <stdio.h>
#include <stdlib.h>

：



內建函式

115

常用函式庫：



內建函式

116

數學函式(太多了，僅示範部分)：



內建函式

117

亂數函式(這個好用)：



內建函式

118

時間函式：



內建函式

119

轉換函式：



內建函式

120

以上只是各類函式中的一點點而已，C的內
建函數有一本書那麼多，去買書查閱或問谷
歌大神吧。

呼叫方式：

例如：

變數 = 內建函式名稱(參數1, 參數2, ...);

x = abs(-5);   //x會得到-5的絕對值
y = tolower('A')  //y會得到小寫a



內建函式

121

範例：取得6個1至49之間的亂數。
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main(void)
{

int x;
srand(time(NULL));  //亂數起始種子
for(int i=1; i<=6; i++)
{

x = rand() % 49+1; //取得亂數
printf("%d\n", x);

}  
}



內建函式

122

亂數範圍的公式：
 如果要產生n1(頭)～n2(尾)之間的整數，其公
式為：

 例：要產生20~59之間的亂數：

= 

rand() % (n2 - n1 + 1) + n1

rand() % (59 - 20 + 1) + 20

rand() % 40 + 20



內建函式

123

 範例：取得系統現在日期時間。
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void main(void)
{

time_t now;   //now變數宣告為時間型態
now = time(NULL);  //取得現在的日期時間
printf("系統時間 = %d\n", now);
printf("現在日期時間 = %s", ctime(&now));

}



內建函式

124

範例：輸入X和Y，計算XY。

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main(void)
{

int X, Y;
double Z;
printf("請輸入X和Y：");
scanf("%d %d", &X, &Y);
Z = pow(X, Y);
printf("%d的%d次方為 %.0f",X, Y, Z);

}



內建函式

125

內建函式多不勝數，早期會在手邊準備一本
類似辭典的書來查閱，現在谷歌一下應該就
會有相關使用資訊了。

(範例，非廣告)



自訂函式

126

是指自己定義的函式。
 格式：

 例：

傳回值型態 函式名稱(參數1,參數2,...)
參數宣告;
{

函式主體;
}

void test(x, y)
int x, y;
{

printf("%d", x+y);
}

void test(int x, int y)
{

printf("%d", x+y);
}

或

(參數宣告位置不同)



自訂函式

127

 範例：無傳入參數亦無傳回值的函數。

 主程式 自訂函式

 執行結果：

void main()
{

star();
printf("IBM-PC");
star();

}

void star()
{

for(int i=0; i<=5; i++)
printf("*");

}



自訂函式

128

 說明：

void main()
{

star();
printf("IBM-PC");
star();

}

void star( )
{

for(int i=0; i<=5; i++)
printf("*");

}

表示沒有傳回值 沒有參數輸入

函式主體

直接使用函式名稱
來呼叫



自訂函式

129

 比較嚴謹的寫法：
#include <stdio.h>
#include <stdlib.h>

void star(void);

void main(void)
{   

star(); //函式呼叫
printf("IBM-PC");
star();

}

void star() //函式定義
{

for(int i=0;i<=5;i++)
printf("*");

}

標頭檔

主程式

自訂函式

呼
叫

函式原型宣告：

寫在這個區域，讓整
個程式知道有哪些函
式，每個需要傳入什
麼型態的參數、傳回
什麼型態的資料等資
訊。

對，如果你的程式有
一大堆自訂函式，這
一段就會落落長，每
一個都要寫到。



自訂函式

130

 如果不寫函式原型宣告，那函式就必須放在main()
前面：

#include <stdio.h>
#include <stdlib.h>

void star() //函式定義
{

for(int i=0;i<=5;i++)
printf("*");

}

void main(void)
{   

star(); //函式呼叫
printf("IBM-PC");
star();

}

標頭檔

主程式

自訂函式

呼
叫

寫在main()前面，讓
主程式知道有哪些函
式。但如果函式很多，
又有相互呼叫，就會
比較麻煩，因為在呼
叫前一定要讓編譯器
先看到。

函式少的話可以這樣
用，多了的話還是使
用函式原型宣告方式
比較好。



自訂函式

131

 範例：傳入參數。
#include <stdio.h>
#include <stdlib.h>

void star(int);

main()
{ 

for(int i=1;i<=10;i++)
star(i);

}

void star(int num)
{

for(int j=0; j<num; j++)
printf("*");

printf("\n");
}

傳遞

函式原型宣告
函式名稱：star()
傳入參數：一個整數(int)
傳回值：無(void)

每次呼叫時將 i 的值
傳過去

由 num 接收
傳入的參數

呼叫



自訂函式

132

具傳回值的函式。

 在某些情況下，可能需要在函數中進行某些運算，
並將結果傳回到主程式，可使用具有傳回值的函
數。

 必須有變數或相關的敘述來接收函數的傳回值，
以進行後續處理。

 使用return敘述來傳回值。

 由於return敘述只能傳回一個值，所以若要傳
回多個值，可使用陣列或指標(後面會介紹)。



自訂函式

133

 範例：計算絕對值的函數。

int ABS(int);  //函式原型宣告

void main(void)
{   

for(int i=-3; i<=3; i++)
printf("%d ", ABS(i));

}

int ABS(int num) //宣告傳回值是整數
{

return (num<0) ? -num : num;
}

由return敘述
傳回結果

呼叫 傳遞



自訂函式

134

 範例：輸入國英數成績，計算其平均值。
//函式原型宣告，傳回值為浮點數
float avg(float, float, float);

void main(void)
{

float chi,eng,math;
printf("請輸入國、英、數成績(以空白間隔):");
scanf("%f %f %f",&chi, &eng, &math);
printf("平均成績：%5.1f\n",avg(chi,eng,math));

}

float avg(x, y, z)
float x, y, z; //傳入之參數型態宣告
{  

float avescore = (x+y+z)/3;
return(avescore);

}

呼叫 傳 遞

由return敘述
傳回結果



遞迴函式(Recursive)

135

 當函式裡又呼叫自己時，這種情況稱為遞迴。

 有些問題用遞迴可以得到更簡潔的程式，但不一
定會有高效率。

 使用遞迴時要注意：

 1.傳入的參數：要能符合要解決的問題。

 2.終止條件：錯誤或沒有終止條件，將造成無
盡迴圈甚至當機。

 經典應用：最大公因數 (GCD)、費波納西數列
(Fibonacci Sequence)、河內塔 (Hanoi 
Tower)、N個字元的排列組合等。



遞迴函式(Recursive)

136

遞迴函數大多是這個模式：
 (注意，它不是迴圈的概念!)

int sub(……)
{

if(終止條件)
return(……);

else
sub(……);

} 

呼叫自己
終止呼叫,返回
呼叫它的那一層



遞迴函式(Recursive)

137

 範例：計算階層。
int fac(); //函式原型宣告

void main(void)
{   int num;

printf("請輸入階層數:");
scanf("%d", &num);
printf("%d! = %d", num, fac(num));

}

int fac(int n)
{   

if(n==1)
return(1);

else
return(n * fac(n-1) );

}

呼叫自己,

並傳入新參數值



遞迴函式(Recursive)

138

 範例：計算階層遞迴過程說明(設num=3)。

printf("%d! = %d",num,fac(3));

return(3 * fac(2));

int fac(int n)
{   

if(n==1)
return(1);

else
return(n * fac(n-1) );

}

return(1)

return(2 * fac(1));

傳回1

傳回2*1

傳回3*2

得到6，傳給printf()

呼叫

呼叫

呼叫

終
止
呼
叫
，
開
始
返
回

呼叫自己，
傳入新參數



遞迴函式(Recursive)

139

 範例：求第n個費氏級數值(0,1,1,2,3,5,8,...)。
int F();  //函式原型宣告
void main(void){   

int n;
printf("請輸入n:");
scanf("%d", &n);
printf("f(%d) = %d", n, F(n));

}
int F(int N)
{

int val;
if(N==1)

val = 0;
else if(N==2)

val = 1;
else

val =  F(N-1) + F(N-2);
return(val);

}

會分兩次呼叫自己



遞迴函式(Recursive)

140

 圖解：(n=5)

 最後傳回3

int F(int N){
int val;
if(N==1)

val = 0;
else if(N==2)

val = 1;
else

val =  F(N-1) + F(N-2);
return(val);

}

val = F(5)

val = F(4) + F(3)

val = F(3) + F(2)

return 1 return 0

val = F(2) + F(1)

val = F(2) + F(1) return 1 return 0return 1

1

1 1

0

01

2 1

3 





 

 

 



請跟著...跑一遍



休息一下~

141



前置命令處理程式

142

置命令處理程式是對編譯器(Compiler)所
下的指令，讓編譯器知道程式中的一些設定。

格式說明:
 1.以 # 字開頭。

 2.可放在程式任何地方，但通常在main()之前
或某個函數之前。

 (前面出現過的#include就是)。



#define命令

143

 #define會使編譯器以標記字串取代原始程
式檔中每個出現的識別碼。

目的：
 1.使程式容易閱讀

 2.容易修改

格式：
#define 識別碼 標記字串

取代



#define命令

144

例：

 程式中有出現字串"PI"的地方，在編譯時都將
被"3.14159"取代後再送去編譯。

例：

 程式中有出現字串"MAX"的地方，都將被"100"
取代。

#define PI  3.14159
取代

#define MAX  100
取代



#define命令

145

 範例：計算球面積。
#include <stdio.h>
#define PI  3.14159 //定義PI為3.14159

float area(float rad){    
return(4 * PI * rad * rad);

} //球面積 = 4πr2

float area(float); //函式原型宣告

void main(void)
{   

float radius;
printf("請輸入球半徑:");
scanf("%f",&radius);
printf("球面積是：%.2f",area(radius));

}

編譯時"3.14159"會取代"PI"

所以編譯器看到的會是:
return(4 * 3.14159 * rad * rad) 



#define巨集

146

利用字串替代的特性定義簡單的巨集指令。

巨集會產生較多的程式碼，但執行的速度較
函數快。

格式：

 Ex:

指令執行時ERROR將被printf()指令取代

#define 巨集名稱 單行敘述;

#define ERROR  printf("\nError\n");

取代



#define巨集

147

 範例：

#define ERROR printf("\nError\n");
main()
{

:
if(x != y)

ERROR
else

:
}

#define ERROR printf("\nError\n");
main()
{

:
if(x != y)

printf("\nError\n");
else

:
}

原始碼

編譯器看到的

被取代成



#define巨集

148

使#define巨集接受引數。

#define PR(x)  printf("%.2f\n",x);

void main(void)
{  

float num1=27.25, num2;
num2 = 1.0/3.0;
PR(num1);
PR(num2);

}

傳入



#define巨集

149

範例：取得兩整數較大者，利用巨集簡化程
式。

#include <stdio.h>
#define MAX(a,b) ((a)>(b)?(a):(b))

void main(void)
{  

int x, y;
printf("請輸入兩個整數：");
scanf("%d %d", &x, &y);
printf("%d 比較大", MAX(x,y));

}



#include前置命令

150

此命令讓程式可以載入另一個檔案，通常是
事先定義好的標頭檔(Header file)。

 C語言對相關的應用及內定函數已經定義好
許多標頭檔，可直接include進來，其副檔
名為 *.h。

格式：

  在目前路徑尋找該檔,找不到再去系統目錄找。

  直接到系統設定的目錄找。

#include "檔名.h"

#include <檔名.h>



#include前置命令

151

我們已經使用過#include很多次了。放在
程式最前面即可引入。

#include <stdio.h> //標準輸出入函式庫
#include <stdlib.h> //標準函式庫
#include <math.h> //數學函式庫
#include <time.h> //日期時間函式庫

：

main( )
{

：
}



#include前置命令

152

 #include使用範例：引入自訂標頭檔。

#define  PI  3.14159
#define  AREA_CIRCLE(radius)  (PI*radius*radius)
#define  AREA_SQUARE(length,width)  (length*width)

檔案: area.h

#include "area.h"
#include <stdio.h> //標準函式庫
void main(void)
{   float R,L,W;

printf("請輸入R L W：");
scanf("%f %f %f",&R, &L, &W);
printf("%f\n", AREA_CIRCLE(R));
printf("%f\n", AREA_SQUARE(L,W));

}

主程式: 引入



休息一下~

153



變數的使用範疇及生命週期

154

在C語言中，資料項目(或變數)的儲存類別，
關係著該項資料的使用範疇(Scope)與生命
週期(Lifetime)。

 使用範疇(Scope)：又稱可見範圍，程式中能"
看得見"此資料項目的部分。
 全域變數：宣告在所有區塊之外的變數。

 區域變數：宣告在某個區塊內的變數。

 生命週期(Lifetime)：資料項目存在主記憶體
中之時間。



變數的使用範疇及生命週期

155

 說明Scope之重要性:

#include <......>

int X;

main()
{

int Y;
:

}

function()
{

int Z;
:

}

全域變數：
所有函式區塊都
可以存取此變數

區域變數：
只有該區塊內可
以存取

區域變數









變數 X：
所有區塊都可以
存取此變數。

main()：
只可以存取Y和X，
看不見Z。

function()：
只可以存取Z和X，
看不見Y。



變數的使用範疇及生命週期

156

說明Scope之重要性:

void test();
main()
{  

int X=1;
:

test();
}

void test()
{

printf("%d\n", X);
}

呼叫

X在哪???

X只在main()內有效,

其他函數是看不見的

變數X的scope並沒有涵蓋函數test()，printf()無法正常進行!



變數的使用範疇及生命週期

157

 說明生命週期Lifetime之重要性:
#include <......>

int X;

main()
{

int Y;
:

}

function()
{

int Z;
:

}

變數X：
自宣告開始至程式
結束都一直存在於
記憶體。

變數Y：
自宣告開始至main()
結束為止。跟變數X
差度多，但可見範圍
不同。

變數Z：
當呼叫到此函示時
自其宣告開始至此
函式結束為止。



變數的使用範疇及生命週期

158

 說明生命週期Lifetime之重要性:

main()
{   

int sum(), result, i;
for(i=1; i<=5; i++)

result = sum(i);
printf("%d", result);

}

int sum(int n)
{   

int temp=0;
temp += n;
return(temp);

}

呼叫

傳回temp

執行結果：5 (並不是1+2+3+4+5=15)

因 temp 之生命週期只為 sum() 函數執行期間，故每次執行
sum() 之後，其記憶體空間將被釋放，當再次被呼叫時，將重
新配置 temp，先前的值就不存在了。



儲存類別

159

變數的儲存類別分為：
 auto(自動)

 register(暫存器)

 static(靜態)

 external static(外部靜態)

 extern(外部)

適當的選擇儲存類別可以：
 提高記憶體使用效率。

 增加程式執行效率。

 減少程式之錯誤。



儲存類別

160

儲存類別(Storge class)：

 區塊：即由"{"與"}"所括住的程式段。
 程式：該程式執行的期間。
 一個檔案：該程式所有函數均可看見。
 多個檔案：所有正在執行的程式間皆可看見。

保留字 Scope Lifetime

auto 區塊 區塊

register 區塊 區塊

static(內部靜態) 區塊 程式

static(外部靜態) 一個檔案 程式

extern 多個檔案 程式



儲存類別

161

 auto與register儲存類別：

例：

 auto與register之區別
 auto宣告之變數是存在主記憶體中。

 register宣告之變數是存在暫存器中，以減少
記憶體耗損，提高存取度，若已無暫存器可用，
則自動轉換為auto類別。

auto int a;      //a為auto類別之變數
register int r; //r為暫存器類別之變數
int i; //i未設定儲存類別,以auto視之



儲存類別

162

 auto範例：

 說明：
auto可省略。
兩個i位於不同區塊，所以是不同的，第二個i只在
其區塊內可見，離開該區塊後即消失。

main()
{

auto int i = 0;
{

auto int i = 3;
printf("區塊內的i是 %d\n",i);

}
printf("區塊外的i是 %d\n",i);

}

:

0

3

:

i

i

記憶體

分配memory

分配memory

執行結果：
區塊內的i是 3

區塊外的i是 0



儲存類別

163

 static儲存類別：

 在函數執行後，變數的值若要保留，已備下次呼
叫時使用，則可宣告成static(靜態變數)。

 static分成兩種：

 內部靜態(internal static)：宣告於函數內部。

 外部靜態(external static)：宣告於函數外部。

 兩者都是用 static 宣告，只是宣告之位置不同。



儲存類別

164

 static範例：

main()
{   

int sum(), result, i;
for(i=1; i<=5; i++)

result = sum(i);
printf("%d", result);

}

int sum(int n)
{   

static int temp=0;
temp += n;
return(temp);

}

呼叫

傳回temp執行結果：15 

 static變數的初值只設定一次，第二次即不
會再做 temp=0 的動作。

變數temp經static宣告後，即
使函式結束，其內容仍保留在記
憶體中，直到再次被呼叫時繼續
使用。



儲存類別

165

 extern儲存類別：
 extern儲存類別的作用在於分享其他檔案內的
全域變數。

 例：

int i =200;

main()

{

:

}

File1.c

extern int i;

main()

{

:

}

File2.c File3.c

main()

{

int i; 

:

}

全
域
變
數

參考

外部變數，
參考誰有宣
告全域的 i

區域變
數，與
前者無
關



休息一下~

166



陣列(Array)

167

用途：
 陣列(Array)係用來儲存一組具有相同資料型態
的資料。

目的：
 減少變數的個數，使程式的編寫更容易。

 陣列可配合迴圈來處理大量資料。



陣列(Array)

168

為何要使用陣列?
 若要將一組有相關性意義的資料(如全年中各月
份的薪資)存放在記憶體中，若每一份資料宣告
一個變數，如：

 如此宣告使得程式的編寫變得冗長而不具效率。

 故應使用陣列來改進此種缺失。

long int salary1;     //一月份薪水
long int salary2;     //二月份薪水

： ：
long int salary12;    //十二月份薪水
//一共要宣告12個獨立的變數



陣列(Array)

169

宣告：任何陣列在使用前必須先宣告。
格式為：

 型態：陣列中所有元素之共同資料型態。

 陣列名稱：用以識別不同陣列，命名規則同一般
變數。

 陣列長度：陣列中可存放的總元素個數(通常為
1~65535)。

型態 陣列名稱[陣列長度];



陣列(Array)

170

一維陣列宣告：
 例： Long int salary[12];

陣列名稱
元素的形態 陣列長度

[0] [1] [2] [11]

……salary

註標

第1個元素 第12個元素

注意：陣列註標為正整數,而且是從0開始



陣列(Array)

171

陣列元素內容存取：
 存入至某元素：

 取出某元素內容：

陣列名稱[註標] = 值; 例：salary[0] = 369;

變數 = 陣列名稱[註標]; 例：x = salary[0];



陣列(Array)

172

 範例：將一年中各月份的薪資填入陣列中，並顯
示總和(使用for迴圈)。

void main(void)
{

long int sum=0, salary[12]; //宣告陣列
for(int m=0; m<12; m++)
{

printf("請輸入%d月薪資:", m+1);
scanf("%ld", &salary[m]); //存入陣列
sum += salary[m]; //自陣列取出元素值

}
printf("總和：%ld", sum);

}



陣列(Array)

173

 範例：將一年中各月份的薪資填入陣列中，並顯
示總和(使用do-while迴圈)。

void main(void)
{

long int sum=0, m=0, salary[12];
do
{

printf("請輸入%d月薪資:", m+1);
scanf("%ld", &salary[m]);
sum += salary[m];
m++;

}while(m<12);
printf("總和：%ld", sum);

}



陣列(Array)

174

例：將前述陣列中所有元素依序取出。

例：將每月薪資均加上1000元。

for(int m=0; m<12; m++)
{

printf("%d月薪資為%d\n", m+1, salary[m]);
}

for(int m=0; m<12; m++)
{

salary[m] += 1000;
}



陣列(Array)

175

陣列界限檢查：
 C語言中對陣列不做界限的檢查。

 當存取陣列元素時，若所引用的註標超過所宣告
之陣列長度時，C語言在compiler時並不提供任
何警告，但在執行時會存取到其他記憶體空間的
資料，而造成不可預期的錯誤。

例：
long int x, salary[12];

salary[15] = 1000;

x = salary[16]; 取到未知的值

宣告 已在陣列之外,這個記憶
體空間會被覆蓋,造成程
式錯誤



陣列(Array)

176

範例：錯誤邊界存取。
void main(void)
{

int n[5]; //宣告陣列，有5個元素
for(int i=0; i<5; i++)
{

printf("請輸入整數：");
scanf("%d", &n[i]); //i=0~4

}
for(int j=0; j<8; j++)

printf("n[%d] = %d\n",j ,n[j]);
}                             //j=0~7

這三個是甚麼鬼？
(是其它程式空間的記憶體內容)



陣列(Array)

177

一維陣列初值設定：
 在宣告陣列時也可同時指定初值。

 陣列初值設定方式：

 例：

型態 陣列名稱[陣列長度] = {初值1, 初值2, …};

以逗點分隔的一些常數

int x[4] = {10,20,30,40};

10 20 30 40陣列 x
註標 [0]      [1]     [2]      [3]



陣列(Array)

178

陣列初值設定注意事項：
 設定陣列初值時，可以不須宣告陣列之長度。

 例：

 編譯器會依初值之個數自行訂出陣列長度。

 同以下敘述：

int arr[ ] = {1, 2, 3, 4, 5};

空白即可

int arr[5] = {1, 2, 3, 4, 5};



陣列(Array)

179

陣列初值設定注意事項：
 設定陣列初值時，若所宣告之陣列長度：

 大於初值個數：編譯器會將陣列中其餘元素初值設為0。

 小於初值個數：編譯器會發出錯誤訊息。

 宣告陣列但未設定初值時，則陣列之初值為：
 為auto或register時初值無法預測，為所分配之記
憶體區塊內殘存之值。

 為global或static時初值自動設為0。

int X[2] = {1, 2, 3, 4}; //會有錯誤訊息

int X[4] = {1, 2}; 1 2 0 0

[0]    [1]     [2]    [3]



陣列(Array)

180

 範例：將一年中每一月份的天數印出來。

int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
void main(void) //陣列直接設定初值
{   int month;

for(month=0; month<12; month++)
printf("%2d月有%d天\n", month+1, days[month]);

}

[0] [1] [2] [3] … … … [10] [11]

31 28 31 30 31 30 31 31 30 31 30 31

宣告陣列時即指定初值



多維陣列

181

即兩個維度以上之陣列。C語言之最大維數
沒有限制，視編譯程式而定。

宣告方式：

例：

 宣告為三維陣列，型態為整數，三維之長度分別
為2、3、4，共有2*3*4=24個元素。

型態 陣列名稱[陣列長度].........[陣列長度];

int arr[2][3][4];



多維陣列

182

二維陣列：
 宣告方式：

 例：

 示意圖：

型態 陣列名稱[列數(row)][行數(column)];

int A[3][4];

0 1 2 3

0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

column

row



多維陣列

183

二維陣列初值設定：
 方式一：

 方式二：

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

col

row

int A[3][3] = { {1,2,3}, {4,5,6}, {7,8,9} }; 

int A[3][3] = { {1,2,3},
{4,5,6}, 
{7,8,9} }; 



多維陣列

184

 範例：將數字1~9如圖示依序填入二維陣列。

void main(void)
{

int arr[3][3];  //宣告一個3*3的二維陣列
int x = 1;
for(int row=0; row<3; row++)
{

for(int col=0; col<3; col++)
{

arr[row][col] = x++;
printf("%d  ", arr[row][col]);

}
printf("\n");

}
}

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

col

row



以陣列作為引數傳遞

185

將陣列傳給函數時，只需陣列名稱即可，當
陣列名稱單獨使用時，即代表該陣列的位址，
也就是陣列中第一個元素的位址。

List &List[0]

陣列名稱 第一個元素的位址

==



以陣列作為引數傳遞

186

 利用陣列來當函數的引數，相當於一次傳入多
個參數函數，也可獲得多個傳回結果。

 傳遞陣列給函數時，並不會將此陣列複製一份，
函數與主程式都是看到同一個陣列。

main()
{   

int a[5];
:    

sub(a);
sub(&a[0]);

:
}

void  sub(b)
int b[];
{

:
}

a[0] b[0]

呼叫並傳遞陣列位址



以陣列作為引數傳遞

187

 使用者輸入一組數目，程式會把最大的印出來。

#define  MAXSIZE  20
int max();

void main(void)
{

int list[MAXSIZE];
int size=0, num;
do
{

printf("請輸入整數(0結束):");
scanf("%d", &list[size]);

}while(list[size++]!=0);
size--;
num = max(list,size);
printf("最大值是%d\n",num);

}

int max(list2, size2)
int list2[], size2;
{   

int dex, max;
max = list2[0]; 
for(dex=1; dex<size2; dex++)

if(max<list2[dex])
max = list2[dex];

return(max);
}

:

:

:

list list2
list[0] list2[0]

list[19] list2[19]



以陣列作為引數傳遞

188

 陣列名稱與變數名稱：
 如果list是一個陣列，則list就代表它的起始位址。

 如果list是一個簡單的變數，則list就代表它的內
容。

 同一個函式中，陣列名稱與變數名稱不可相同。

 例：

int arr[5], x;
:

x = arr; 

int arr, x;
:

x = arr; 

這是一個陣列 這是一個變數

x得到arr陣列的起始位址 x得到arr的內容



字串(String)

189

字串只是一連串的字元，也就是char型態
的陣列。

 例：
 雖然只有五個字母,但真正存於記憶體共六個字。

 所有的字串都必須以空字元"\0"為結束，此字元之值
為零，稱Null字元。

 (老實說，我覺得C的字串處理能力蠻弱的，它連string型態
都沒有，其它語言都有...)

printf("APPLE");



字串(String)

190

 輸入字串範例：
 雖然陣列長度為15，但只能輸入14個字，最後一個
要保留給null字元，若超過14個字，將會把記憶體
中其它的資料覆蓋過去，造成無法預期的後果。

 scanf()中fname不用加&，因其為陣列，只需使用
陣列名稱即代表其位址。
void main(void)
{   

char fname[15];
printf("請輸入你的名字:");
scanf("%s",fname);
printf("Greetings, %s.", fname);

}



字串輸出入函數

191

 puts()：字串輸出
 puts()比printf()簡單，但只能輸出一個字串，
無法包含變數，若只是要單純的輸出一字串，
puts()較方便。

 gets()：字串輸入
 gets()可接受空白及跳格鍵(Tab)，直到按下
Enter才會結束輸入。



字串輸出入函數

192

 puts與gets範例：

void main(void)
{

char name[81];
puts("請輸入你的名字：");
gets(name);
puts("你好， ");
puts(name);

}

將要輸出的字串放
入puts函數即可。
puts最後會自動加
上換行。

將字串陣列名稱放
入gets即可，輸入
之字串會放入該陣
列。



設定字串之初值

193

字串初值設定方式：
 方式一：

 方式二：

兩種方式都是一樣的，陣列不用指定大小，
程式會自動依字元數決定，並自動補上
null字元。

char name[] = {'O','r','i','o','n'};

char name[] = "Orion";



休息一下~

194



結構(Structure)

195

結構(Structure)概念：
 變數只能存放一個資料。

 例：

 陣列只可以存放多個相同型態的資料。

 例：

 結構可以存放一組不同型態的資料。

 例：一個變數包含三個儲存空間，其形態可不同。

int X; int

int X[3]; int int int

char int float

X

X

X



結構(Structure)

196

結構宣告(定義結構方式)：

結構也可以說是一個由程式設計者自訂的資
料型態。

struct 結構名稱
{

資料型態 變數名稱;
: 
:

資料型態 變數名稱;
}

struct mydata
{

char name[20];
int age;
float score; 

}

例：



結構(Structure)

197

 結構定義及宣告範例：

main()
{

struct easy
{

int num;
char ch;

};

struct easy ez1;
:
:

}

定義一個新
的資料型態

一種新的資料型態叫 easy

包含兩個變數,稱
「資料成員(Data member)」

宣告一個
easy類型的
結構變數

型態 變數名稱

num

ch

ez1
(不可遺漏分號)



結構(Structure)

198

設定結構初值：
 在宣告結構變數時指定初值。

 依結構成員之型態順序指定，以大括符包圍，並
以逗點分開。

 依前例：

struct easy ez1 = { 3 , 'a' };
struct easy ez2 = {15 , 'b' };



結構(Structure)

199

結構成員存取：
 利用「.」運算子來連接結構變數與結構成員。

 例：

 若變數為指向結構的指標時，則可使用「->」
運算符號(指標稍後介紹)。

struct easy ez1;
ez1.num= 3;
ez1.ch= 'a';

struct easy ez1,*ptr;
ptr = &ez1;
ptr->num = 3;
ptr->ch = 'a';



結構(Structure)

200

 結構存取範例：

main()
{   struct easy

{   
int num;
char ch;

};

struct easy ez1;
ez1.num = 3;
ez1.ch = 'a';
printf("%d  %c\n", ez1.num, ez1.ch);

}

宣告結構變數

定義結構



結構(Structure)

201

將定義與宣告結合：
 在定義結構後直接宣告結構變數。

 例：
定義結構struct easy

{    
int num;
char ch;

} ez1, ez2; 以逗點隔開,分號結束

宣告結構變數ez1和ez2



結構(Structure)

202

複製結構內容：

 多個宣告成相同結構型態的變數之間，可視同一
般變數做運算，如：

 ez2內所有成員變數的內容會被指定給ez1內相
同成員的變數。

struct easy ez1, ez2;

ez1 = ez2;



結構(Structure)

203

 複製結構內容：
void main(void)
{   

struct test
{

int a, b;
char c;

}te1, te2;

printf("請輸入一個字元：");
scanf("%c", &te1.c);
printf("請輸入兩個數字：");
scanf("%d %d", &te1.a, &te1.b);
te2 = te1;
printf("%d %d %c\n", te2.a, te2.b, te2.c);

} 

a c

te1

b

a c

te2

b

te2 = te1



巢狀結構

204

即結構中包含結構。

結構一經定義完畢，即可視為新的資型態，
故另再定義新結構時亦可包含此種資料型態，
成為巢狀結構。
 例：結構B例包含了一個結構A。

int

char

結構A

int

char

結構A

int char

結構B



巢狀結構

205

 巢狀結構範例：

agename[30]Liu

agename[30]Chen

team1
struct personal
{   char name[30];

int age;
};

struct team
{   struct personal Liu;

struct personal Chen;
};

struct team team1={{"Orion Liu",30 },{"Becky Chen",20}};

void main(void)
{   printf("Liu:");

printf("Name:%s, age:%d\n",team1.Liu.name,team1.Liu.age);
printf("Chen:");
printf("Name:%s, age:%d\n",team1.Chen.name,team1.Chen.age);

}  

存取方式

結構team包含兩個結構變數



休息一下~

206



指標(Pointer)

207

指標是C語言提供直接指引在記憶體某一個
指定位址的一種類似於路標的設施。

其實指標變數的內容就是一個記憶體位置，
我們透過它可以直接存取某個記憶體位置的
內容。

這個功能太危險，所以之後的語言(C++、
Java、Python..等)都把這個功能拿掉了。



指標(Pointer)

208

指標之內容即為記憶體位址。

 (讀取A得到5，讀取&A得到025F。)

025E

A 025F 5

0260

: :

記憶體位址

變數和它的位址：

變數A由作業系統自行
分配位址，本例假設在
記憶體位址025F的地方，
其內容值為5。



指標(Pointer)

209

指標變數的宣告(使用*號)：
 格式：

 例：

 宣告了3個指標變數，其中ptr1用以存放某一個字元
變數的位址，而ptr2與ptr3用以存放某整數變數的位
址。

 換句話說，ptr1指到一個字元變數，ptr2與ptr3各指
到一個整數變數。

資料型態 *指標變數名稱;

char  *ptr1;
int *ptr2, *ptr3;



指標(Pointer)

210

 指標使用範例：

main()
{   int i= 3;

int j= 5;
char c= 'a';
char *ptr1;
int *ptr2, *ptr3;
ptr1= &c;
ptr2= &i;
ptr3= &j;

}

位址 內容 變數名稱

03EF 3 i

03F0 5 j

03F1 a c

03F2 03F1 ptr1

03F3 03EF ptr2

03F4 03F0 ptr3

:

其內容
是存放
記憶體
位址

將變數c的位址
取出,然後指定
給ptr1

PS：要記得記憶體位址是隨機分配的，每次執行時都不盡相同。



指標(Pointer)

211

 & 與 * 運算符號：

 & 運算符號是用以取得變數的位址，稱為
「取址運算符號(Address operator)」。

 * 運算符號是用來取得指標所指向的變數
的內含值，稱為「間接定位運算符號」。



&a 取得變數a的位址

*b 取得指標變數b指到的位址的內容



指標(Pointer)

212

 &運算符號使用法：

 其作用是將變數名稱之所在位址取出，而後可以
將該位址值指定給指標，例：

 &只對變數名稱作運算，故&(i+1)或&(5)均是錯
誤的，&也不可以對register變數作運算，因為
register在CPU內，沒有位址值。

int x, *ptr; //宣告整數變數x及指標變數ptr
ptr = &x;  //將變數x的位址存入指標ptr中

(稱為ptr指向x)



指標(Pointer)

213

 &符號使用範例：

(無號長整數或16進位數)

//取出變數位址交給指標變數

void main(void)
{   int i, j, *ptr1, *ptr2;

char c, *ptr3;
ptr1= &i;
ptr2= &j;
ptr3= &c;
printf("整數i的位址:%lx\n", ptr1);
printf("整數j的位址:%lx\n", ptr2);
printf("字元c的位址:%lx\n", ptr3);

} 

62FE04 i

62FE00 j

62FDFF c

: : :

62FE10 62FE04 ptr1

62FE08 62FE00 ptr2

62FDF8 62FDFF ptr3

&i

&j

&c



指標(Pointer)

214

 *運算符號之使用：
 作用：將指標所指向的變數的內容取出。

 例：

62FE04 10 x

62FE00 10 y

: : :

62FDFF 62FE04 ptr

 ptr= &x  y= *ptr



int x=10, y, *ptr;
ptr= &x;  //將x的位址取出,放入ptr中
y= *ptr;   //將ptr所指向的位址之內含值取出放入y



指標(Pointer)

215

 範例：利用指標指向兩個整數x、y，並將x、y之
內容值相加，結果放回x中。

main()
{

int x=5, y=10, *ptrx, *ptry;
ptrx= &x; 
ptry= &y;
x= *ptrx + *ptry;

}



 


1000 5  15 x

1002 10 y

: :

1050 1000 ptrx

1052 1002 ptry

5+10 = 15

*ptrx*ptry





 



PS:記憶體位址是隨便寫的



指標(Pointer)

216

 範例：指標測試程式(一)
void main(void)

{   int i=5, *ptri;
ptri= &i;
printf("The address of i is: %X\n", &i);
printf("The address of ptri is: %X\n", &ptri);
printf("The value of ptri is: %X\n", ptri);

printf("The value of *ptri is: %X\n", *ptri);
}

62FE1C 5 i

62FE10 62FE1C ptri

:ptri=&i



指標(Pointer)

217

 指標測試程式(二)：

main()
{   

int *p, *q; //宣告兩個指標變數
:
:

 *p= 2; //p與q初值設定
 q= p;

printf("%d %d\n", *p, *q);
}  

62FE1C 2

:

62FE00 62FE1C p

62FC52 62FE1C q









PS:本程式片段僅供說明,不能執行,因指標變數未做初值設定

執行結果會顯示： 2   2



指標(Pointer)

218

 傳遞指標給函數：

void sub(int*, int*);
main()
{   

int *p, *q;
:
:

*p=1; *q=2; 
sub(p,q);  
printf("%d %d\n",*p,*q);

}    

void sub(int *x, int *y){
*x= 3; 
*y= 4; 

} 

( p與q初值設定,假定為290及292 )

傳遞指標

290 1 3

292 2 4

: :

65480 290 p

65482 292 q

65484 290 x

65486 292 y







執行結果： 3    4





指標(Pointer)

219

 多重指標：
 多重指標指的是有兩個以上的*運
算。

 例如：
 *x: 表示x指標所指到的位址之內容。
 **x: 表示指標變數*x的內容所指到
的位址之內容。

 因為指標的功能後來的語言都
不支援了，所以就此簡單的介
紹，有興趣的同學可以自行鑽
研。

05B3 ?

: :

2C83 05B3 *x

2C86 2C83 **x



休息一下~

220

 若指標不熟也不用緊張，除了C++，其它語言
都沒有指標了(有類似的功能，但更安全)。



檔案存取

221

基本上檔案I/O和標準I/O運作原理相同，
只是對象不同而已。
 標準I/O：對螢幕及鍵盤。

 檔案I/O：對檔案。

檔案讀寫流程：
 Step1:定義指向FILE結構的指標。

 Step2:開啟檔案。

 Step3:呼叫檔案處理相關函數進行檔案操作。

 Step4:關閉檔案。



檔案存取

222

 常用檔案存取函式：



檔案存取

223

 常用檔案存取模式：



檔案存取

224

 檔案字元I/O(寫入)：
#include <stdio.h>
#include <conio.h>
void main(void)
{   

FILE *fptr;
char ch;   
fptr= fopen("D:\\test.txt","w");
if(fptr == NULL)

printf("檔案開啟失敗");
else{

printf("請輸入字串，空白結束：");
while((ch=getche()) != ' ')

fputc(ch, fptr);
fclose(fptr); }

}

檔案結構定義在此

檔案結構關鍵字

檔案指標,準備指向一個檔案

檔案名稱

開啟檔案

關閉檔案

將字元送至檔案

將鍵入的字元依序送至檔案內,直到輸入空白為止

模式 作用

r 讀取

w 寫入

a 附加

判斷檔案開啟
是否成功



檔案存取

225

 檔案字元I/O(讀出)：

#include <stdio.h>

void main(void)
{   

FILE *fptr;
char ch;   
fptr= fopen("D:\\test.txt","r");
if(fptr == NULL)

printf("檔案開啟失敗");
else{

while((ch=fgetc(fptr)) != EOF)
printf("%c",ch);

fclose(fptr); }
}

檔案結構關鍵字

檔案指標,準備指向一個檔案

檔案名稱

開啟檔案

關閉檔案

一次讀入一個字元,然後印出,直到檔尾(EOF)為止

模式 作用

r 讀取

w 寫入

a 附加
自檔案讀出字元



檔案存取

226

 檔案字串I/O(寫入)：
#include <stdio.h>
#include <string.h>
void main()
{   

FILE *fptr;
char str[81];
fptr= fopen("D:\\test.txt","w");
if(fptr == NULL)

printf("檔案開啟失敗");
else{

printf("請輸入字串，空白行結束：");
while(strlen(gets(str)) > 0){

fputs(str, fptr);
fputs("\n", fptr);

}
fclose(fptr); }

}

開啟檔案

關閉檔案
一次寫入一個字串,並加上換行字元,直到輸入字串長度為0止

寫入字串

使用字串必須引入此標頭檔



檔案存取

227

 檔案字串I/O(讀出)：
#include <stdio.h>
#include <string.h>
void main()
{   

FILE *fptr;
char str[81];
fptr= fopen("D:\\test.txt","r");
if(fptr == NULL)

printf("檔案開啟失敗");
else{

while(fgets(str,80,fptr) != NULL)
printf("%s", str);

fclose(fptr); 
}      

}

開啟檔案

關閉檔案

一次讀出一行(最大長度為80字元),直到讀到空行(NULL)為止

自檔案讀入一行字串



檔案存取

228

 讀出檔案時利用feof()函式來判斷是否以讀取完畢。
#include <stdio.h>
#include <string.h>
void main()
{   

FILE *fptr;
char str[81];
fptr= fopen("D:\\test.txt","r");
if(fptr == NULL)

printf("檔案開啟失敗");
else
{  while(!feof(fptr))

{  fgets(str,80,fptr);
printf("%s",str);

}
fclose(fptr); 

}      
}

開啟檔案

關閉檔案

使用feof()函數檢
查是否已到檔尾



檔案存取

229

檔案的傳回值：
 以fopen()開啟檔案成功會傳回檔案指標，失敗
則會傳回NULL值。

 fgetc()讀取成功會傳回字元，失敗則會傳回
EOF。

 fgets()讀取成功會傳回字串，失敗則會傳回
NULL。

 (應注意所使用之讀取函數及結束時傳回值。)



檔案存取

230

 檔案的格式化I/O：
 當輸入的資料有各種型態時，就必須使用fprintf()
及fscanf()函數。

 使用方式與printf()及scanf()相同，只是多了一
個檔案指標的參數。

 例：
fprintf( fptr, "%s %d\n", a, b);

fscanf( fptr, "%s %d\n", a, b);

檔案指標 格式 變數



檔案存取

231

 檔案格式化I/O(寫入)：

#include <stdio.h>
#include <string.h>
int main()
{   FILE *fptr; char id[10]; int score;

if((fptr=fopen("D:\\test.txt","w"))==NULL)
{   printf("檔案無法開啟!"); 

return(1);
}
do
{   printf("請輸入學號和成績(分數大於100時結束):");

scanf("%s %d", id, &score);
if(score<=100)

fprintf(fptr,"%10s %3d\n", id, score);
}while(score<=100);
fclose(fptr);

}
使用fprintf()函數依序將資料寫入檔案

寫入前先確認
資料是有效的

結束程式

檢查檔案是否
開啟成功

依指定格式寫入檔案



檔案存取

232

 前例執行結果：
 執行畫面。

 所謂格式化是指

依指定格式

"%10s %3d\n"

寫入檔案。
留10格空間 留3格空間

留1格空白

 每行結束有
換行字元



檔案存取

233

 檔案格式化I/O(讀出)：

#include <stdio.h>
#include <string.h>
int main()
{   FILE *fptr; char id[10]; int score;

if((fptr=fopen("D:\\test.txt","r")) == NULL)
{

printf("檔案無法開啟!"); 
return(1);

}
printf("id       score\n--------------\n");
while(fscanf(fptr,"%s %d", id, &score) != EOF)

printf("%-10s %3d\n", id, score);
fclose(fptr);

}

檢查檔案是否開啟成功

使用fscanf()函數依序將資料讀出直到檔尾

結束程式

依指定格式讀入每一行的資料

靠左對齊



實例練習

234

另發，請參考作業及講義。



下課~

235


