
程式語言與設計
劉和師 老師 part 3

2025/8/20

1



資料結構

 資料結構(data structure)是電腦中儲存、組織資料的方式。

 正確的資料結構選擇可以提高演算法的效率。在電腦
程式設計的過程中，選擇適當的資料結構是一項重要
工作。

 常見的資料結構：
 陣列（Array）

 堆疊（Stack）

 佇列（Queue）

 鏈結串列（Linked List）

 樹（Tree）

 圖（Graph）

 堆積（Heap）

 雜湊表（Hash）

2



資料結構 – 堆疊(Stack)

 在日常生活中，把物品(如餐盤、書本)由桌面一個一
個向上疊放，取用時由最上面一個個向下拿去，這種
觀念稱為堆疊(stack)。

 存入稱PUSH，取出稱POP。

3



資料結構 – 堆疊(Stack)

 堆疊觀念：先進後出(First In Last Out，FILO)或稱為
後進先出(Last In First Out，LIFO)。

 堆疊觀念在計算機中使用很廣，例如主副程式間訊息
傳送，CPU中斷處理、遞迴程式的呼叫及返還。

 最著名的問題就是：河內塔。

4



資料結構 – 堆疊(Stack)

 使用堆疊結構，寫一程式，使用者可以有四種選擇：

 1.加入數字

 2.取出數字

 3.查看Stack

 4.離開程式

 (可以用簡單的陣列來做，或以物件的方式實現。)

 將資料y存入堆疊s，使用指令：

 將最後一個資料pop出來：

s.append(y)

y = s.pop(len(s)-1)

5



資料結構 – 堆疊(Stack)

 參考程式：
#加入一個資料到堆疊
def addNumberToStack(s):

y = int(input("請輸入要加進stack的數字:"))
s.append(y)

#從堆疊取出一個資料
def popNumberFromStack(s):

if len(s) != 0:
y = s.pop(len(s)-1)
print("從stack裡取出的數字為:"+str(y))

else:
print("Stack現在是空的!")

#印出堆疊內容
def showStack(s):

if len(s) != 0:
print("Stack的內容為: "+str(s))

else:
print("Stack現在是空的!")

6



資料結構 – 堆疊(Stack)

 參考程式：

#main
S = []
while True:

x = int(input("[STACK] 1.加入數字 2.取出數字 3.查看
4.離開程式 || 請選擇功能:"))

if x == 1:
addNumberToStack(S)

elif x == 2:
popNumberFromStack(S)

elif x == 3:
showStack(S)

elif x == 4:
break

7



資料結構 – 堆疊(Stack)

 執行結果：

8



資料結構 – 佇列(Queue)

 顧名思義是一種像排隊一樣的概念。

 在這個模式下我們可以知道它是一種先進先出(First-

In-First-Out, FIFO)的排程。

 存入稱Enqueue，取出稱Dequeue。

9



資料結構 – 佇列(Queue)

 使用佇列結構，寫一程式，使用者可以有四種選擇：

 1.加入數字

 2.取出數字

 3.查看Queue

 4.離開程式

 將資料y存入佇列q，使用指令：

 將最前面的資料取出來：

 在Python中我們仍用pop方法來取出資料，只是從陣
列最前頭取出。

q.append(y)

y = q.pop(len(0))

10



資料結構 – 佇列(Queue)

 參考程式： #加入一個資料到佇列
def addNumberToQueue(q):

y = int(input("請輸入要加進Queue的數字:"))
q.append(y)

#從佇列取出一個資料
def popNumberFromQueue(q):

if len(q) != 0:
y = q.pop(0)
print("從Queue裡取出的數字為:"+str(y))

else:
print("Queue現在是空的!")

#印出佇列內容
def showQueue(q):

if len(q) != 0:
print("Queue的內容為: "+str(q))

else:
print("Queue現在是空的!")

11



資料結構 – 佇列(Queue)

 參考程式：

#main
q = []
while True:

x = int(input("[Queue] 1.加入數字 2.取出數字 3.查看
4.離開程式 || 請選擇功能:"))

if x == 1:
addNumberToQueue(q)

elif x == 2:
popNumberFromQueue(q)

elif x == 3:
showQueue(q)

elif x == 4:
break

12



資料結構 – 佇列(Queue)

 執行結果：

13



資料結構 –鏈結串列(Linked List)

14

 對一個已排序的清單來說，要插入一個新資料時就很
麻煩，原先的資料要一個個往後移動以騰出位置給新
資料，這在清單很大時頗無效率。

 例： 原清單

 插入新資料

1 3 5 7 9

1 3 4 5 7 9

5 7 9

4



資料結構 –鏈結串列(Linked List)

15

 我們可以使用鏈結串列(Linked List)，它有點像火車串
接在一起，每一個資料稱為一個節點，每個節點還包
含一個指向下一個節點的資料(稱為指標)。

 它的記憶體空間不像清單(List)是連續的，有可能是隨
機而分散的。

 它在加入及刪除資料時都比清單(List)簡單且快速，但
在搜尋資料的效率上還是清單(List)快。

 除了最簡單的單向鏈結串列，還有雙向鏈結串列、環
狀鏈結串列等結構。

 我們這裡只介紹單向鏈結串列。



資料結構 –鏈結串列(Linked List)

16

 鏈結串列的每一個節點包含一個資料，一個指向下一
個節點的指標，藉由指標將節點串接起來。

 這是一個節點：

 這是一個鏈結串列：

next Data next Data None...

head

起始節點
不放資料

第一個資料由
此節點開始

指向None
表示這是
結尾了

Data next節點的資料 指向下一個節點的位址



資料結構 –鏈結串列(Linked List)

17

 插入一個新資料的過程：

next Data next Data None...

head

將前一個的指標給自己，
以便指向原來的下一個

將自己的位置給前一個指標，
讓它指到自己

Data next

×

找到正確的位置

原來的鏈結形同消失



資料結構 –鏈結串列(Linked List)

18

 刪除一個資料的過程：

 我們在後面介紹物件導向(OOP)時再來實做鏈結串列。

next Data next Data None

head

將這個節點的指標給前一個

讓前一個指標直接指到下一個，
略過自己，就等同刪除了

找到要刪除的資料

原來的鏈結形同消失

× ×



休息一下~

19



排序

 排序(Sort)是將資料依某種規則重新安排其先後順序。

 最常見的是依大小或字母排序。

 常見排序方法：

 1.氣泡排序法(Bubble Sort)

 2.選擇排序法(Selection Sort)

 3.插入排序法(Insertion Sort)

 4.快速排序法(Quick Sort)

 5.合併排序法(Merge Sort)

 不同的排序方法效率不同，

應用的地方也不同。

20



氣泡排序法(Bubble Sort)

 是一種簡單的排序演算法。它重複地走訪過要排序的
數列，每次比較相鄰的兩個元素，如果他們的順序錯誤
就把他們交換過來。(https://www.youtube.com/watch?v=nmhjrI-aW5o )

21

https://www.youtube.com/watch?v=nmhjrI-aW5o


氣泡排序法(Bubble Sort)

 參考程式：
def bubble(Array,i,N):  #氣泡排序一個循迴

k = N-1
while k>i:

if Array[k-1]>Array[k]:
Array[k-1],Array[k] = Array[k], Array[k-1]

k = k-1
#main
A = []
N = int(input("請輸入陣列大小:"))
#輸入數字並存入陣列
for i in range(N):

x = int(input("請輸入第"+str(i)+"個數字:"))
A.append(x)

#呼叫排序副程式
for i in range(N):

print(A) #每一巡迴就印出陣列現況
bubble(A,i,N)

print(A) 
22



氣泡排序法(Bubble Sort)

 兩變數互換：

 1.其他語言需要藉助另一個變數當中介來交換兩變數。

 2.在Python只要一行就可以了。

即 a , b = b , a

def SWAP(Array,i,j):
temp = Array[i]
Array[i] = Array[j]
Array[j] = temp

temp

Array[j] Array[i]

1

2

3

Array[i] , Array[j] = Array[j] , Array[i]

23



氣泡排序法(Bubble Sort)

 執行結果：

24



選擇排序法(Selection Sort)

 先假設第一個元素是最小
的，依序向後掃描個元
素，若有更小的就記錄起
來，最後和第一個元素互
換位置，完成一個巡迴，
然後第二個元素，依此類
推。

25



選擇排序法(Selection Sort)

 圖示說明：

0 1 2 3 4

A

i
比較 k = i+1 ~ N-1

index

一開始
index=i

找到比i小的就
記錄其註標k

掃完一遍後將A[i]與A[k]互換









k

26



選擇排序法(Selection Sort)

 參考程式： def selection(Array,i,N):
index = i #現在位置
k = i+1 #尋找範圍：現在位置之後到陣列結尾
while k < N: #尋找比現在元素更小的值，並記錄位置

if Array[k] < Array[index]:
index = k

k += 1
if index != i: #如果有記錄到更小的值就交換，否則略過

Array[i],Array[index] = Array[index],Array[i]
#main
A = []
N = int(input("請輸入陣列大小:"))
for i in range(N):

x = int(input("請輸入第"+str(i)+"個數字:"))
A.append(x)

#依每個元素位置呼叫選擇排序副程式
for i in range(N):

print(A)
selection(A,i,N)

print(A)

27



選擇排序法(Selection Sort)

 執行結果：

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

result

最後一次無須交換

28



插入排序法(Insertion Sort)

 假設由小到大排序，每個元素和其左邊比較，若比左
側小則交換，直到比左側大為止。
(https://www.youtube.com/watch?v=OGzPmgsI-pQ&t=11s)

29

https://www.youtube.com/watch?v=OGzPmgsI-pQ&t=11s


插入排序法(Insertion Sort)

 交換原則：

0 1 2 3 4

A

比較A[n]和A[n-1]

 if A[n] < A[n-1]  交換
 直到 A[1] 或 A[n] >= A[n-1]  停止
 下一個，重複直到陣列最後一個元素

n

30



插入排序法(Insertion Sort)

 參考程式： def insert(Array,i):
k = i
while k >= 1: #從第i個位置開始向前依序比較

if Array[k] < Array[k-1]: #比左側小則交換兩元素
Array[k-1],Array[k] = Array[k],Array[k-1]

else: #否則結束本pass
break

k = k - 1
#main
A = []
N = int(input("請輸入陣列大小:"))
for i in range(N):

x = int(input("請輸入第"+str(i)+"個數字:"))
A.append(x)

k = 1
while k < N:  #從第1個元素開始依序呼叫排序副程式

print(A,"\n")
insert(A,k)
k += 1

print(A) #印出最後結果

31



插入排序法(Insertion Sort)

 執行結果：

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

result

無須交換

32



快速排序法(Quick Sort)

 快速排序法的原理是選定一個數X(稱「基準」pivot)，
然後設法將數列分成三份，如圖：

 使用遞迴，以一樣的方式再分別處理A段和B段，直到
所有數字都處理完畢。

 遞迴到最底部時，數列的大小是零或一，也就是已經
排序好了。

 快速排序通常明顯比其他演算法更快。

<X X >X

A (pivot) B

33



快速排序法(Quick Sort)

 演算過程如下：

 1.令數列中最左邊的數為X(pivot)。

 2.設立兩個指標i和j。

 3.將i往右移，直到找到第一個A[i]>=X為止。

 4.將j往左移，直到找到第一個A[j]<=X為止。

 5.將A[i]與A[j]互換。

 6.重複以上動作直到i>=j為止。

 7.將X與A[i]互換。

X . . .

i j

34



快速排序法(Quick Sort)

 原理示範說明：(https://www.youtube.com/watch?v=cnzIChso3cc)

35

https://www.youtube.com/watch?v=cnzIChso3cc


快速排序法(Quick Sort)

 流程圖：

36



快速排序法(Quick Sort)

 流程圖：

37



快速排序法(Quick Sort)

 流程圖：

38



快速排序法(Quick Sort)

 參考程式：

#交換兩元素
def SWAP(Array,i,j):

Array[i], Array[j] = Array[j], Array[i]

#將i往右移，直到找到第一個A[i]>=X為止
def ipart(Array,pivot,i):

while i+1 <= len(Array) and Array[i]<pivot:
i += 1

return i

#將j往左移，直到找到第一個A[j]<=X為止
def jpart(Array,pivot,j):

while j-1 >= 0 and Array[j]>pivot:
j -= 1

return j

39



快速排序法(Quick Sort)

 參考程式： def quick(Array,left,right):
print("Q: left=",left,",right=",right)
if left < right:

pivot = Array[left]
print("pivot=A[",left,"]=",pivot)
i = left +1
j = right

while i <= j:
i = ipart(Array,pivot,i)
print("i=",i)
j = jpart(Array,pivot,j)
print("j=",j)
if i < j:

print("i<j，執行交換A[",i,"]和A[",j,"]")
SWAP(Array,i,j)
print(A)

print("交換pivot和A[",j,"]")
SWAP(Array,left,j)
print(A)
quick(Array,left,j-1)
quick(Array,j+1,right)

說明：
程式較冗長是因為
要印出執行的過程。

40



快速排序法(Quick Sort)

 參考程式：

#main
A = []
N = int(input("請輸入陣列大小:"))

for i in range(N):
x = int(input("請輸入第"+str(i)+"個數字:"))
A.append(x)

print(A)
quick(A,0,N-1)
print(A)

41



快速排序法(Quick Sort)

 執行結果：

42



快速排序法(Quick Sort)

 執行結果：

43



合併排序法(Merge Sort)

 合併排序法是依據”合併”來排序的，假設我們有兩個
已經排好的數列，我們就可以很容易的將兩個數列合
併成一個排序好的數列。

 採用先打散，再合併的方式，

稱為divide and conquer。

 一般都以遞迴來實現。

44



合併排序法(Merge Sort)

 原理示範說明：(https://www.youtube.com/watch?v=JSceec-wEyw)

45

https://www.youtube.com/watch?v=JSceec-wEyw


合併排序法(Merge Sort)

 流程圖：

46



合併排序法(Merge Sort)

 流程圖：

47



合併排序法(Merge Sort)

 參考程式：

def merge(Array,left,right):
print("M: left=",left," right=",right)
middle = int((left+right)/2)
i = left
j = middle + 1
print("i=",i," j=",j)
Temp = []
while i <= middle and j <= right:

if Array[i] < Array[j]:
Temp.append(Array[i])
i += 1

else:
Temp.append(Array[j])
j += 1

print("Temp=",Temp)
while i <= middle:

Temp.append(Array[i])
i += 1

while j <= right:
Temp.append(Array[j])
j += 1

for k in range(len(Temp)):
Array[left+k] = Temp[k]

print(Array,end="")
#將排序好的內容印出
print("(",end="")
leftRange = left
while leftRange <= right:

print(Array[leftRange],end="")
leftRange += 1

print(")排序好\n")48



合併排序法(Merge Sort)

 參考程式： def divide(Array,left,right):
print("D:left=",left,",right=",right)
middle = int((left+right)/2)
if (right-left) > 1:

divide(Array,left,middle)
merge(Array,left,middle)
divide(Array,middle+1,right)
merge(Array,middle+1,right)
#印出合併的提示訊息，左半邊要與右半邊合併
print("接著將左邊(",end="")
leftRange = left
while leftRange <= middle:

print(Array[leftRange],end="")
leftRange += 1

print(")及右邊(",end="")
leftRange = middle + 1
while leftRange <= right:

print(Array[leftRange],end="")
leftRange += 1

print(")合併...")
49



合併排序法(Merge Sort)

 參考程式：

#main
N = int(input("請輸入陣列大小："))
A = [0 for i in range(N)]
for i in range(N):

x = int(input("請輸入第"+str(i)+"個數字"))
A[i] = x

print(A)
divide(A,0,N-1)
merge(A,0,N-1)
print("排序完成：",A)

50



合併排序法(Merge Sort)

 執行結果：

51



休息一下~

52



搜尋(Search)

53

 搜尋就是在一堆資料中找出所要之特定資料。

 搜尋之主要核心動作為「比較」動作，必需透過比較
才有辦法判斷是否尋找到特定資料。

 資料未排序時，使用循序搜尋。

 排序過的資料，可使用二分搜尋或其他搜尋方式。



循序搜尋

54

 就是一個一個依序搜尋，效率較差，但資料若未經排
序，僅能使用此方法。

 例如找某一值，則從A(0)開始，一個個比較下去。

? ? …… ? ?A
(0) (1) ……         (n-1)    (n)



 產生100個1~100的亂數，找出是否有使用者指定的數值。

循序搜尋練習

55



循序搜尋練習

56

 參考寫法：
import random 
num = []    #宣告一個空陣列
for i in range(100):

#產生一個亂數,並使用append()方法加入到陣列
num.append(random.randint(1,100))
#印出陣列內容
print("[" + str(i) + "]=" + str(num[i]), end="\t")   

flag = 1
x = int(input("請輸入要尋找的數值(1~100)："))
#循序搜尋
for i in range(100):

if num[i] == x:
print("在位置[" + str(i) + "]找到 " + str(x))
flag = 0
break

if flag:
print("沒有找到 " + str(x)) 



循序搜尋練習

57

 產生10000個1~10000的亂數，找出是否有使用者指
定的數值，並顯示搜尋次數及位置。

(找了10000次)

(找了2905次)



循序搜尋練習

58

import random 
num = []    #宣告一個空陣列
for i in range(10000):

#產生一個亂數,並使用append()方法加入到陣列
num.append(random.randint(1,10000))

flag = 1
x = int(input("請輸入要尋找的數值(1~10000)："))
#循序搜尋
for i in range(10000):

if num[i] == x:
print("共搜尋 " + str(i+1) + " 次")
print("在位置[" + str(i+1) + "]找到 " + str(x))
flag = 0
break

if flag:
print("共搜尋 " + str(i+1) + " 次")
print("沒有找到 " + str(x))

 參考寫法：



循序搜尋

59

循序搜尋特性：

資料不需事先排序。

 N個資料，則搜尋比對的次數最少1次，
最多N次。

平均需要比對(N+1)/2次。



二分搜尋(Binary Search)

60

 必要條件：資料必須經過排序。

 方法：每次將資料分為兩半，看指到的資料是否符合，
若不是，則再搜尋符合範圍內的一半資料即可。

? ? …… ? ?A
(0) (1) ……         (n-1)    (n)

Low High
Middle



二分搜尋

61

 設有一已排序陣列A，則：

 Low， L = 第一個元素，A[0]。

 High，H = 最後一個元素，len(A) 。

 Middle，M = 中間值，( L + H ) / 2。

 若A[M]即為要搜尋的值，則結束。

 若要搜尋的值 > A[M]，則 L = M + 1。

 若要搜尋的值 < A[M]，則 H = M – 1。

 重複此動作直到找到，或 H < L，則表示搜尋失敗，
找不到。



二分搜尋

62





二分搜尋練習

63

 產生10000個1~10000的亂數，找出是否有使用者指
定的數值，並顯示搜尋次數及位置。

(找了13次)

(找了11次)



二分搜尋練習

64

 參考寫法：

import random 
A = []
for i in range(10000):

A.append(random.randint(1,10000))

A.sort() #一定要先排序過
L = 0 #陣列起始註標值
H = len(A)-1 #陣列最後註標值
T = 0 #紀錄搜尋次數
flag = 1 #紀錄是否已找到，以提前結束迴圈
x = int(input("請輸入要尋找的數值(1~10000)："))
while H >= L:

T += 1
M = int((L+H)/2)
if x == A[M]:

print("共搜尋" + str(T) + " 次")
print("在位置A[" + str(M) + "]找到 " + str(x))
flag = 0
break

elif x < A[M]:
H = M - 1

else:
L = M + 1  

if flag:  #若flag仍為1，表示沒找到
print("共搜尋" + str(T) + " 次")
print("沒有找到 " + str(x))

二
分
搜
尋



二分搜尋

65

二分搜尋特性：

資料必需事先排序。

 N個資料，則搜尋比對的次數：

最少1次，最多Log2N次。

 說明：

 若有64筆資料，則搜尋次數最多為Log264 = 6 (找到或找
不到)。

 若Log不好算，換一個說法：2X 必須>= 64，故X=6。



二分搜尋練習

66

 寫一程式，產生64個
1~100的亂數，排序
後以二分搜尋找尋指
定的值，要顯示搜尋
過程中L、H、M及
A[M]的值。

(最佳，只找了1次)

(最差，找了7次)



二分搜尋練習

67

 參考寫法：

import random 
A = []    #宣告一個空陣列
for i in range(64):

A.append(random.randint(1,100))
A.sort()  #一定要先排序過
L = 0
H = len(A)-1
T = 0
flag = 1
x = int(input("請輸入要尋找的數值(1~100)："))
print("L\tM\tH\tA[M]") #利用\t(tab)跳格來對齊
print("-----------------------------")
while H >= L:

T += 1
M = int((L+H)/2)
print(str(L) + "\t"+str(M)+"\t"+str(H)+"\t"+str(A[M]))
if x == A[M]:

print("共搜尋" + str(T) + " 次")
print("在位置A[" + str(M) + "]找到 " + str(x))
flag = 0
break

elif x < A[M]:
H = M - 1

else:
L = M + 1

if flag: #若flag仍為1，表示沒找到
print("共搜尋 " + str(T) + " 次")
print("L="+str(L)+" > H="+str(H)+",沒有找到 "+str(x))

二
分
搜
尋



休息一下~

68



資料結構 – 二元搜尋樹(Binary Search Tree)

 樹是一種資料結構方式，使用鏈結串列(Link List)來組
成資料，因為連接的方式像一棵樹，故稱之。

 這都是「樹」：

69



 樹的相關定義：
 1.一個樹包含了一組有限的元素，稱為節點(Node)。

 2.一組有限的方向線段，稱分支(Branch)，連接到結點
上。

 3.和這個節點有關的分支數目稱為此節點的degree。

 4.當一個分支指向一個節點時，稱此分支為indegree。

 5.當一個分支離開一個節點時，稱此分支為outdegree。

 6.indegree和outdegree的總和等於該節點的degree。

 7.第一個節點稱為根(Root)，除了根節點外，任何節點
都必須至少有一個indegree，但outdegree則沒有限制。

70

資料結構 – 二元搜尋樹(Binary Search Tree)



資料結構 – 二元搜尋樹(Binary Search Tree)

 樹的一些專有名詞：

71



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元樹定義：

 1.所有的節點(node)至多只能有兩個子樹，稱二元樹。

 2.左邊稱為左子樹，右邊稱為右子樹。

 3.樹不一定要對稱。

72



資料結構 – 二元搜尋樹(Binary Search Tree)

 一些二元樹的例子：

73



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元搜尋樹(Binary Search Tree，BST)是一個二元樹，
並具有下列性質：

 1.任一左子樹都比它的根來的小。

 2.任一右子樹都大於或等於它的根。

 3.每一個子樹亦是一個二元搜尋樹。

74



資料結構 – 二元搜尋樹(Binary Search Tree)

 一些二元搜尋樹的例子：

75



資料結構 – 二元搜尋樹(Binary Search Tree)

 一些無效的二元搜尋樹的例子：

76



資料結構 – 二元搜尋樹(Binary Search Tree)

 如何建立一個二元搜尋樹

 假設輸入數字順序如下：29、34、15、13、31、45

29

3415

453113

第一個數字建立了根

比它的根大比它的根小

0

12

3 4 5

77



資料結構 – 二元搜尋樹(Binary Search Tree)

 在這裡我們使用陣列來表示一個節點：

 所以一棵樹可用一個二維陣列來表示：

 None表示無子節點。

Node i[0] = 節點的值
Node i[1] = 節點的編號
Node i[2] = 節點的左子節點編號
Node i[3] = 節點的右子節點編號

Tree[0] = [29,0,2,1]
Tree[1] = [34,1,4,5]
Tree[2] = [15,2,3,None]
Tree[3] = [13,3,None,None]
Tree[4] = [31,4,None,None]
Tree[5] = [45,5,None,None]

29

3415

453113

0

12

3 4 5

78



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元搜尋樹走訪(列出所有資料)，有三種方式：

 DLR: 前序走訪 (Preorder Traversal)

 LDR: 中序走訪(Inorder Traversal)

 LRD: 後序走訪(Postorder Traversal)

 (D: root, L: 左子樹, R: 右子樹)

 以LDR為例，是先走訪左子樹(直到沒有左子樹為止)，
根結點，然後右子樹。如果右子樹底下還有左子樹，
擇期左子樹要優先訪，這是一個遞迴。

D

L R

79



資料結構 – 二元搜尋樹(Binary Search Tree)

 LDR中序走訪 (Inorder Traversal)：

29

3415

453113

0

12

3 4 5

13輸出結果： 15 29 31 34 45

80



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元搜尋樹的輸入：將一個數字input_value輸入到某一節點index。
def insert(index,input_value,tree):

#若輸入的數字比此node所儲存的值還小，則針對left chile tree
if input_value < tree[index][0]:

#若left chile tree存在，試著在left sub-tree中找到適合的位置插入輸入的數字
if tree[index][2] != None:

insert(tree[index][2],input_value,tree)
#若left chile tree不存在，將此node產生一個新的left chile node並儲存此輸入的數字
else:

#產生一個新的node
newNode = [input_value,len(tree),None,None]
#將此新的node加入tree中
tree.append(newNode)
#tree[index][2]記錄此新加入node的index
tree[index][2] = len(tree) - 1
print("加入新node:NODE["+str(len(tree)-1)+

"](此node為NODE["+str(tree[index][1])+"]的left child node).")
#若輸入的數字比此node所儲存的值還大，則針對right chile tree
elif input_value >= tree[index][0]:

if tree[index][3] != None:
insert(tree[index][3],input_value,tree)

#若Right chile tree不存在，將此node產生一個新的Right chile node並儲存此輸入的數字
else:

#產生一個新的node
newNode = [input_value,len(tree),None,None]
#將此新的node加入tree中
tree.append(newNode)
#tree[index][3]記錄此新加入node的index
tree[index][3] = len(tree) - 1
print("加入新node:NODE["+str(len(tree)-1)+

"](此node為NODE["+str(tree[index][1])+"]的right child node).")81



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元搜尋樹的搜尋：

def searchValueFromTree(index,input_value,tree):
print("NODE["+str(tree[index][1])+"]所儲存的數字為"+str(tree[index][0]))
#若比此node所儲存的數字還小，則找left sub-tree
if input_value < tree[index][0]:

print("尋找NODE["+str(tree[index][1])+
"]的left child node:NODE["+str(tree[index][2])+"]")

if tree[index][2] == None:
print("NODE["+str(tree[index][1])+

"]的left child node不存在，找不到"+str(input_value)+"這個數字!")
else:

searchValueFromTree(tree[index][2],input_value,tree)
#若比此node所儲存的數字還大，則找right sub-tree
elif input_value > tree[index][0]:

print("尋找NODE["+str(tree[index][1])+
"]的right child node:NODE["+str(tree[index][3])+"]")

if tree[index][3] == None:
print("NODE["+str(tree[index][1])+

"]的right child node不存在，找不到"+str(input_value)+"這個數字!")
else:

searchValueFromTree(tree[index][3],input_value,tree)
#此node所儲存的數字與input_value相同
else:

print(str(input_value)+"這個數字存在tree中(位置在NODE["+str(tree[index][1])+"])!")

82



資料結構 – 二元搜尋樹(Binary Search Tree)

 二元搜尋樹的讀取資料：

 要讀出整棵樹裡面各節點的數字，我們用採中序式走
訪。

def inorderShowTree(index,tree):
if tree[index][2] != None:

inorderShowTree(tree[index][2],tree)
print("NODE["+str(tree[index][1])+

"]所儲存的數字為"+str(tree[index][0])+
",left child node為NODE["+str(tree[index][2])+
"],right child node為NODE["+str(tree[index][3])+"]")

if tree[index][3] != None:
inorderShowTree(tree[index][3],tree)

83



資料結構 – 二元搜尋樹(Binary Search Tree)

 主程式：

#main
T = []
while True:

x = int(input("[Tree] 1.加入數字 2.搜尋數字 3.中序查看Tree  4.離開程式 || 請選擇功能:"))
if x == 1:

y = int(input("請輸入要加入的數字:"))
if len(T) == 0:

#root[0]代表data，root[1]代表左child的index，root[2]代表右child的index
root = [y,len(T),None,None]
T.append(root)   #將此node加入binary tree T中

else:
#試著找到適合的地方，將輸入的數字插入
insert(0,y,T)

elif x == 2:
y = int(input("請輸入要搜尋的數字:"))
print("從NODE["+str(T[0][1])+"]開始尋找...")
searchValueFromTree(0,y,T)

elif x == 3:
inorderShowTree(0,T)

elif x == 4:
break

84



資料結構 – 二元搜尋樹(Binary Search Tree)

 執行結果：

85



休息一下~

86



正規表示式(Regular Expression)

87

 這個名詞聽來有點嚴肅得嚇人，維基百科是這麼說的：

 正規表示式（英語：Regular Expression，常簡寫為regex、
regexp或RE），又稱正規表達式、正規表示法、規則運算
式、常規表示法，是電腦科學的一個概念。

 正規表示式使用單個字串來描述、符合一系列符合某個句
法規則的字串。在很多文字編輯器裡，正則表達式通常被
用來檢索、替換那些符合某個模式的文字。

 不一定要會，但會了超省力!



正規表示式(Regular Expression)

88

 當我們要比對一項資料時，例如：

 結果會是True或False，但如果我只想確定它是否是一
個合法正確的Email，而不是某特定的Email呢?

 這時就需要用正規表示式了。

 正規表示式是用來比對「格式」，而不是某特定值。

X == 'John@abc.com.tw'



正規表示式(Regular Expression)

89

 在這裡推薦網路上這篇文章，他的說明淺顯易懂，可
以去看一下。

 https://marco79423.net/articles/淺談-regex-及其應用

 (之後的說明也以這篇內容的例子為主，感謝版主~)

 你也可以去Python官方網站看說明(英文的...)。

 https://docs.python.org/3/howto/regex.html

 https://docs.python.org/3/library/re.html

https://marco79423.net/articles/淺談-regex-及其應用
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/library/re.html


正規表示式(Regular Expression)

90

 當你要搜尋「小雞」這個詞時，多半心裡想的是毛茸
茸很可愛的「小雞」，所以當你發現找出來的結果是
「小雞雞」時，心情就不會太好。但你也知道不能怪
可憐的搜尋器，因為你心裡明白它是無辜的。

 反正你就是覺得小雞很可愛，具體是「小母雞」、
「小公雞」、還是「小白雞」無關緊要，只要開頭為
「小」，結尾是「雞」就行了，該怎麼搜呢？有點麻
煩對吧?

 或者你知道想搜尋的句子大致是「小雞 XX 公克重」
這類的句子。但問題在於這個 XX 偏偏就不知道，或
多少都可以，該怎麼搜尋呢?



正規表示式(Regular Expression)

91

 這時正規表示式(簡稱regex)就派上用場了。

 regex 用法規則不少，它大致區分為四種類別，分別
是「選擇」、「次數」、「錨點」和「截取」類。

 利用regex的這些規則組合出一個符合搜尋目標的字串，
就可以輕易地找出我們要的字串。



正規表示式(Regular Expression) - 選擇

92

 如果我想搜尋「小白雞」或「小小雞」：

 「|」代表「或」的意思，表示由「|」區隔出來的字串
都可以接受，在這個例子中，無論是「小白雞」還是
「小小雞」都可抓得到。

 我們也可以加上小括號可以限制「或」的範圍，達成
同樣的效果：

小白雞|小小雞

小(白|小)雞



正規表示式(Regular Expression) - 選擇

93

 如果還要再加上「小母雞」：

 或

 可是如果越來越多，就會有一堆「|」符號，其中 (白|

小|母) 可以用中括號的語法簡化：

小(白|小|母)雞

小白雞|小小雞|小母雞

小[白小母]雞



正規表示式(Regular Expression) - 選擇

94

 可是如果甚麼雞都可以，反正不要是「小雞雞」就行
了，那就可以寫成：

 在中括號內的開頭加上「^」代表反向選擇，只要不是括號
內的字都可以接受。

 表示某個範圍，使用「-」：

 a-z 代表 a 到 z，A-Z 代表 A 到 Z 而 0-9 代表 0 到 9，這個
regex 代表「所有英文字母和數字」都可以接受。

小[^雞]雞

[a-zA-Z0-9] 或 [\w]



正規表示式(Regular Expression) - 選擇

95

 對於常用的一些組合，regex也事先定義了一些表示法：



正規表示式(Regular Expression) - 次數

96

 有時不只出現搜尋的文字不確定，就連出現的次數也
不能肯定。regex 也提供了一些特殊符號來處理這種
次數未定的情況。

 好比說假設我們一開始就知道是小「白」雞，但卻發
現「白」有機會不只出現一次，有可能是「小白雞」、
「小白白雞」、「小白白白雞」、「小白白白白
雞」……。

 這時就可以用「次數」類型的規則處理這個問題



正規表示式(Regular Expression) - 次數

97

 「*」，任意次數( 0 ~ ∞ 次) ：

 可以同時代表「小雞」(沒有白)、「小白雞」、「小白白
雞」、「小白白白雞」……。

 「+」，1次以上( 1 ~ ∞ 次)：

 所以只能是「小白雞」、「小白白雞」、「小白白白雞」、
「小白白白白雞」……。

小白*雞

小白+雞



正規表示式(Regular Expression) - 次數

98

 我們也可以直接指定可以出現的次數範圍：

 { } 大括號代表可以出現的次數範圍，這個例子即代表「白」
可以出現 1 次到 3 次，所以只會有「小白雞」、「小白白
雞」、「小白白白雞」三種情況。

小白{1,3}雞



正規表示式(Regular Expression) - 次數

99

 類似的規則可以見下表：



正規表示式(Regular Expression) - 錨點

100

 有時我們對搜尋的字串出現的位置也有意見，這種類
型的語法比較少，比較有機會用到的就那幾個。

 其中「^」代表開頭，「$」代表結尾。

 例如：

^小白雞 小白雞$

"小白雞...........小白雞"

代表「小白雞」一定要
搜尋內文的開頭

代表「小白雞」一定要
搜尋內文的結尾



正規表示式(Regular Expression) - 錨點

101

 另外還有比較常用的是「\b」和「\B」，前者代表
「邊界」，後者代表「非邊界」。

 例如：

 在這個例子中，「chicken」就不符合要求，因為「k」並
非單字的邊界。但反過來如果是：

 那麼「chicken」就可以接受，但「chick」就不能過。

 (中文字不太適用此規則)

chick\b

chick\B



正規表示式(Regular Expression) - 截取

102

 小括號除了可以改變規則影響的範圍：

 像是下例 regex 對應的字串並非是「小雞雞」，而是「小
雞小雞」:

 括號裡的內容本身也能直接當成結果輸出：

 我們可以用這個 regex 搜尋文章中是否有對應的字串外，
也可以直接截取括號裡的內容。如果符合的字串為「小雞
30 公克重」，我們可以直接取得「30」這個數字。

 小括號也不限於只能用一次：

 這樣我們就能同時取得體重和身高了。

(小雞){2}

小雞 (\d+) 公克重

小雞 (\d+) 公克重， (\d+) 公分長



正規表示式(Regular Expression) - 截取

103

 有時我們會碰到需要考慮「前後文」的字串。

 假設有一種情況，需要知道「小雞」屬於什麼標籤的
內文，該怎麼辦呢？不能單純用角括號「<」和「>」
來判斷，因為裡頭其實也可以包含其他的標籤，好比：

 幸好，用小括號截取出來的字串，也可以當成規則的
一部分。我們可以用小括號配合 \1 解決。

 \1 代表第一個小括號截取出來的內容，在這個例子中
就代表「p」。以此類推，如果有第二個括號，那麼
就是 \2，第三、四個則是 \3 和 \4。

<p>小雞</p>

<p>這是一隻<strong>3000</strong>公克重的小雞</p>

<(\w+)>.*小雞.*</\1>



正規表示式(Regular Expression)

104

 原則上，regex 比較常用的規則大約都不會超出這些，
看起來好像很簡單，但事實上有不少人，可能一聽到
regex，心裡就會抽蓄，不能自已。

 不過這也不能怪他們，舉個例子，下面是 Google 到
驗證 Email 格式的 regex：

 看到這個噁心的語法，誰都會想叫媽媽。

((([\t ]*\r\n)?[\t ]+)?[-!#-'*+/-9=?A-Z^-~]+(\.[-!#-'*+/-9=?A-Z^-
~]+)*(([\t ]*\r\n)?[\t ]+)?|(([\t ]*\r\n)?[\t ]+)?"(((([\t ]*\r\n
)?[\t ]+)?([]!#-[^-~]|(\\[\t -
~])))+(([\t ]*\r\n)?[\t ]+)?|(([\t ]*\r\n)?[\t ]+)?)"(([\t ]*\r\n
)?[\t ]+)?)@((([\t ]*\r\n)?[\t ]+)?[-!#-'*+/-9=?A-Z^-~]+(\.[-!#-
'*+/-9=?A-Z^-
~]+)*(([\t ]*\r\n)?[\t ]+)?|(([\t ]*\r\n)?[\t ]+)?\[((([\t ]*\r\n
)?[\t ]+)?[!-Z^-~])*(([\t ]*\r\n)?[\t ]+)?](([\t ]*\r\n)?[\t ]+)?)



正規表示式(Regular Expression)

105

 常用的符號及規則列表：



正規表示式(Regular Expression)

106

 常用的符號及規則列表：



休息一下~

107



Python 的 re 模組

108

 並不是所有程式語言都支援正規表示式。

 在 Python 中，要使用 regex 並不難，已經內建在標
準庫裡頭了，只要引入「re」模組即可。

 其中最常用的函式，大概就是 re.search 函式了。

(全部給我閃開，我知道怎麼用正規表示式！)

import re



Python 的 re 模組

109

 Python 中「re」模組常用函式：



Python 的 re 模組

110

 Python 中「re」模組常用函式：



Python 的 re 模組

111

 還是小雞的範例：
import re

text = "…… 小雞 30 公克重 ……" #要搜尋的內文
#第一個參數代表pattern，後者代表要搜尋的內文
match_object = re.search(r"小雞 (\d+) 公克重", text)
# 如果有抓到，就會回傳一個 Match Object，
# 若無則回傳 None
if match_object :

# group 函式會回傳截取的內容，
# 0 代表自己， 1 代表第一個截取的內容，依此類推
print(match_object.group(0))
#執行結果： '小雞 30 公克重'
print(match_object.group(1))
#執行結果： 30



Python 的 re 模組

112

 要同時找多個符合的結果，則可以使用 re.findall 函式：

import re

text = "小雞 白雞 黃雞 綠雞"

List = re.findall(r".雞", text)
print(List)  
#執行結果： ['小雞', '白雞', '黃雞', '綠雞']



Python 的 re 模組

113

 抓取特定格式的字串，大概就是最常見的應用情景，
通常會順帶截取字串裡的關鍵資訊。

 在這個例子中，小雞的體重就成功的被抓出來，之後
的減肥計劃就可以順利展開了。

import re

text = "…… 小雞 300 公克重 ……"
match_object = re.search(r"小雞 (\d+) 公克重", text)

if match_object and int(match_object.group(1)) > 100:
print("好肥的小雞……開始減肥！")



Python 的 re 模組

114

 要注意 regex 是一行一行找的，所以對於換行的處理，
有幾個比較奇怪的地方，舉個例子：

 只搜尋一行就停止了。

import re
text = """
雞腿
雞心
雞肝
"""
L = re.search("雞.*", text)
print(L.group(0))  # '雞腿'



Python 的 re 模組

115

 雖然前面有說過「.」代表任意字元，但其實不包含換行，
當碰到第一個換行時，就會停止抓取，所以最後只抓到
「雞腿」就停止了。如果要讓「.」也能代表換行字元，就
要加上「DOTALL」這個 flag 才行。

import re
text = """
雞腿
雞心
雞肝
"""
L = re.search("雞.*", text, re.DOTALL)
print(L.group(0))  #執行結果： '雞腿'

# '雞心'
# '雞肝'



Python 的 re 模組

116

 「^」和「$」的情況比較像反過來，前面說過兩者分別代
表文章的「開頭」和「結尾」，但有時我們可能會希望這
個「開頭」或「結尾」代表的是「行」的開頭和結尾，這
時可以加上「MULTILINE」這個 flag。

import re
text = """
雞腿
雞心
雞肝
"""

print(re.findall("^雞.*", text))
#執行結果： []
print(re.findall("^雞.*", text, re.MULTILINE))  
#執行結果： ['雞腿', '雞心', '雞肝']



休息一下~

117



物件導向程式設計(OOP)

118

 物件導向程式設計(Object Oriented Programming，
OOP)，是一種程式設計方法或程式開發方式。

 早期的程式設計觀念都是「程序導向」的，就是一行
一行依序執行，加上函式呼叫來完成。

 但程式越來越複雜，電腦是要模擬真實世界，解決真
實世界的問題的，所以我們將程式編寫成一個個的
「物件」，並寫出它們之間的關係與動作，來完成程
式。



物件導向程式設計(OOP)

119

 類別(Class)：
 一種抽象概念，類別算是一個藍圖、一個範本、一個可參
考的文件，他沒有實體 (Instance) 的概念，例如一個建築
物的藍圖，可依這個藍圖蓋出很多房子的實體。

 物件(Object)：
 依照類別產生出來的實體稱為物件，在程式中是真實可以
存取應用的元件。一個類別可以產生很多物件，這些物件
都是各自獨立的。例如依照同一個藍圖(Class)蓋出來的一
堆房子(Object)。

 屬性(Attributes)：
 每一個物件都有自己的屬性，以房子來說有高度、坪數等。
同一類别的物件會有相同的屬性，但它們的「值」可能會
不同。



物件導向程式設計(OOP)

120

 例一：
類別(Class)
是一個概念，沒
有房子的實體

物件(Object)
即類別的實例
(Instance)

屬性(Attributes)
有相同的屬性名稱，
但值不同

名稱 值

顏色 棕

地址 AAA...

主人 張三

名稱 值

顏色 藍

地址 BBB...

主人 李四

名稱 值

顏色 綠

地址 CCC...

主人 王二



物件導向程式設計(OOP)

121

 例二：

名稱 值

姓名 林志伶

身高 174

體重 50

三圍 A,A,A

名稱 值

姓名 周子虞

身高 172

體重 46

三圍 B,B,B

名稱 值

姓名 劉的華

身高 176

體重 70

婚姻 已婚

名稱 值

姓名 周星星

身高 170

體重 72

婚姻 未婚

人類(Class)
是一個概念，沒有指涉任何人。
屬性：姓名、身高、體重

這是另一類...

女人(Class)
還是一個概念，
沒有指涉任何人。
子類別屬性：三圍

男人(Class)
還是一個概念，
沒有指涉任何人。

子類別屬性：婚姻

物件(Object)
實際存在的實體

屬性
繼承父類別的
屬性加上子類
別的屬性。

父類別(superclass)

繼 承

子類別(subclass)



物件導向程式設計(OOP)

122

 繼承(Inheritance)：

 繼承的概念是如果一個類別B「繼承自」另一個類別A，就
把這個B稱為「A的子類別」，而把A稱為「B的父類別」。
繼承可以使得子類別具有父類別的各種屬性和方法，而不
需要再次編寫相同的代碼。在子類別繼承父類別的同時，
可以重新定義某些屬性，並重寫某些方法，即覆蓋父類別
別的原有屬性和方法，使其獲得與父類別不同的功能。另
外，為子類別追加新的屬性和方法也是常見的做法。

 屬性與方法：

 屬性其實就是物件內的資料成員(data member)，是用來存
放資料的變數。

 方法(Method)是物件裡的函式，用來執行某些動作。



事件(Event)和方法(Method)

123

物件(Object):
程式裡的某個東西，例如
表單或按鈕...等。

事件(Event)：
例如按了滑鼠左鍵或右鍵、
某程序觸發了中斷等。

方法(Method):
物件如何反應，對
該事件要做什麼事。

外部物件:
鍵盤、滑鼠…等，任
何能發出信號的東西。



物件導向程式設計(OOP)

124

 封裝(Encapsulation)：

 將資料放在物件裡面，只能透過定義好的方法存取，這樣
可以保障資料的安全不會被亂改到。

我口袋有
多少錢只
有我知道

資料成員

物件其它物件或程序

事件 方法
(可以存取口袋)

你不能直接到我口袋拿錢



物件導向程式設計(OOP)

125

 多型(Polymorphism)：

 簡單的說就是不同型別的
物件有同樣名稱的方法，
呼叫同名的方法時，會得
到不同的結果。

class 動物:
def 叫一聲( ):

(抽象方法，
留給繼承的
類別去定義)

class 貓貓(動物):
def 叫一聲( ):

"喵喵~"

class 狗狗(動物):
def 叫一聲( ):

"汪汪~"

繼 承

貓貓.叫一聲()
#得到"喵喵~"

狗狗.叫一聲()
#得到"汪汪~"



物件導向程式設計(OOP)

126

 總之，使用物件導向程式的目的是簡化程式，重複利
用程式碼，減少程式開發時間。

 你也可以把物件想像成是比較複雜的資料型態，還包
含了某些功能(方法)在一起。

一個變數

資料

(數值 或 文字 或 ...)

一個物件

資料 資料

方法 方法

...

...



物件導向程式設計(OOP)

127

 Python定義類別語法：

 例如：

class 類別名稱(父類別)：
#定義初始化內容
#定義方法

class Animal： #類別名稱通常會用大寫開頭
...敘述...

class Cat(Animal): #繼承自Animal類別，
...敘述... #Python是允許多重繼承的

class 類別名稱：
#定義初始化內容
#定義方法

或



物件導向程式設計(OOP)

128

 例如定義一個Person類別：

 有name和age兩個資料成員。

 一個setData()方法用來設定資料成員內容。

 一個showData()方法來顯示資料成員內容。

class Person:
def setData(self, name, age):

self.name = name
self.age = age

def showData(self):
print('姓名:',self.name,'年齡:',self.age)

資料成員方法



物件導向程式設計(OOP)

129

 例：

class Person: #宣告一個Person類別
def setData(self, name, age):

self.name = name
self.age = age

def showData(self):
print('姓名:',self.name,'年齡:',self.age)

boy1 = Person() #建立一個Person類別的物件叫boy1
boy2 = Person() #建立一個Person類別的物件叫boy2

boy1.setData('阿帥','30') #執行setData()方法
boy2.setData('小明','20')
boy1.showData() #執行showData()方法
boy2.showData()



物件導向程式設計(OOP)

130

 可是這樣的成員宣告方式還是可以從外部直接存取，沒有達到
封裝的效果：

class Person: #宣告一個Person類別
def setData(self, name, age):

self.name = name
self.age = age

def showData(self):
print('姓名:',self.name,'年齡:',self.age)

boy1 = Person()    #建立一個Person類別的物件叫boy1

boy1.name = '阿率' #直接存取物件的資料成員而不經過setData()
boy1.age = '20'

boy1.showData()   #執行showData()方法



物件導向程式設計(OOP)

131

 將資料成員或方法封裝起來，只能由物件內部定義的
方法存取，物件外部無法存取。

 只要在名稱前面加上兩個底線 __即可，但名稱的後
方不可以有底線。

 例如：

範 例 屬 性 說 明

name 公開的 未特別指定，為公開的屬性

__name 私有的 正確的設為私有屬性

__name__ 公開的 後面加了底線，所以不是私有屬性



物件導向程式設計(OOP)

132

 將資料成員name與age改成私有屬性，外部不可存取，一定要
透過setData()方法才行：

class Person: #宣告一個Person類別
def setData(self, name, age):

self.__name = name
self.__age = age

def showData(self):
print('姓名:',self.__name,'年齡:',self.__age)

boy1 = Person()    #建立一個Person類別的物件叫boy1

boy1.__name = '阿帥' #這樣存取私有屬性的資料成員
boy1.__age = '20' #是不會有反應的

boy1.showData()   #執行showData()方法會有錯誤訊息，因為
# __name與__age沒有值

將name與age設成私有屬性



物件導向程式設計(OOP)

133

 這才是正確的，透過setData()方法設定資料成員：

class Person: #宣告一個Person類別
def setData(self, name, age):

self.__name = name
self.__age = age

def showData(self):
print('姓名:',self.__name,'年齡:',self.__age)

boy1 = Person()    #建立一個Person類別的物件叫boy1

boy1.setData('阿率','20') #正確的作法

boy1.showData()   #執行showData()方法

將name與age設成私有屬性



物件導向程式設計(OOP)

134

 因為資料成員若無初值就直接叫用會發生錯誤，我們
可以在建立物件時就直接給予一個初值。

 可以在定義類別時加入建構子(Constructor)，讓物件
生成時就先自動執行這一個方法來初始化物件。

 透過__init__()方法來為物件設定初值，物件生成時一
定會先執行這個方法。

class 類別名稱:
def __init__(self, ... , ...): #建構子

#物件初始化時要做的事
:
:

def 其他方法(self, ... , ...):
:



物件導向程式設計(OOP)

135

 有__init__()的範例：

class Person:    #宣告一個Person類別
def __init__(self,name='阿帥',age='30'): #建構子

self.__name = name
self.__age = age  

def setData(self, name, age):
self.__name = name
self.__age = age

def showData(self):
print('姓名:',self.__name,'年齡:',self.__age)

boy1 = Person()    #建立一個Person類別的物件叫boy1
boy1.showData() #會顯示預設值
boy1.setData('小華','18') #自行設定__name

#與__age的值
boy1.showData() #會顯示剛才設定的值

當物件被建立時若沒有給予參數，此預設值就會執行



物件導向程式設計(OOP)

136

 若有__init__()，也可以在建立物件時就給予初值：

class Person:    #宣告一個Person類別
def __init__(self,name='阿帥',age='30'): #建構子

self.__name = name
self.__age = age  

def setData(self, name, age):
self.__name = name
self.__age = age

def showData(self):
print('姓名:',self.__name,'年齡:',self.__age)

#建立一個Person類別的物件叫boy1，並給予初值
boy1 = Person('小明','26')
boy1.showData()



物件導向程式設計(OOP)

137

 物件也可以輕易的用在清單(List)上。

class Person:    #宣告一個Person類別
:
(同前，略)
:

#建立一個含有10個Person物件的清單
boys = [Person() for i in range(10)]

boys[0].showData() #顯示boys[0]內定值
boys[1].setData('阿美','18') #設定boys[1]的值
boys[1].showData() #顯示boys[1]的值

Person Person Person Person Person Person Person Person Person Person
boys

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]



物件導向程式設計(OOP)

138

 類別繼承；可以單一繼承或多重繼承，子類別將擁有父類
別的非私有屬性及方法，並可加上自己的新成員或方法，
或覆寫父類別的方法。

父類別A

資料A 方法A

父類別B

資料B 方法B

子類別

資料A 方法A

新資料 新方法

子類別

資料A 方法A

新資料 新方法

資料B
方法B

單一繼承 多重繼承

方法B 被
子類別覆寫
(就是改變
其原有功能)



物件導向程式設計(OOP)

139

 繼承的宣告方式：

 單一繼承：

 多重繼承：

class 類別名稱(父類別)：
:
敘述
:

class 類別名稱(父類別A, 父類別B, ...)：
:
敘述
:



物件導向程式設計(OOP)

140

 單一繼承範例：

class Person:    #宣告一個Person類別
def __init__(self,name='無',age='無'):  #建構子

self.name = name
self.__age = age  

def setData(self, name, age):
self.name = name
self.__age = age

def showData(self):
print('姓名:',self.name,'年齡:',self.__age, end=' ')

class Man(Person): #宣告一個Man類別，繼承自Person類別
def __init__(self, name='無', age='無', mm='無'):

Person.setData(self, name, age) #呼叫父類別的方法
self.military_service = mm

def setMilitary(self, mm):
self.military_service = mm

def changeName(self, nn):
self.name = nn

def showData(self):
Person.showData(self)
print('兵役:', self.military_service)

資料成員，加了雙底線的__age為私有屬性，不能被繼承

子類別新增的資料成員

子類別新增的方法

子類別擴展了父類別的方法



物件導向程式設計(OOP)

141

 單一繼承範例：

class Person

class Man(Person)

name __age

name

setData showData

setData showData

military_service setMilitary changeName

繼承

私有屬性不能
被繼承

子類別新增的

繼承來的

父類別的方法
被擴充了



物件導向程式設計(OOP)

142

 單一繼承範例：

class Person:  #宣告一個Person類別
(同前，略)

class Man(Person): #宣告一個Man類別，繼承自Person類別
(同前，略)

boy1 = Man() #建立一個Man類別的物件叫boy1
boy1.showData()
boy1.setData('阿明','18')
boy1.setMilitary('陸軍')
boy1.showData()
boy1.changeName('大亮')
boy1.showData()
boy1.name = '小明' 
boy1.__age = '20'
boy1.showData()

這行是不會有反應的



物件導向程式設計(OOP)

143

 多重繼承範例：
class Man:

def setAtt(self, temper='開朗', height='180cm'):
self.temper = temper; self.height = height

def showAtt(self):
print(self.temper, self.height, end=' ')

class Woman:
def setAtt(self, eye='大眼睛', skin='白皮膚'):

self.eye = eye; self.skin = skin
def showAtt(self):

print(self.eye, self.skin)

class Child(Man, Woman):
def __init__(self):

Man.setAtt(self); Woman.setAtt(self)
def setAtt(self, temper, height, eye, skin):

self.temper = temper; self.height = height
self.eye = eye; self.skin = skin

def showChildAtt(self):
Man.showAtt(self); Woman.showAtt(self)

繼承自Man與Woman

覆寫了父類別
的方法



物件導向程式設計(OOP)

144

 多重繼承範例：

class Man class Woman

temper height

setAtt showAtt

繼承

eye skin

setAtt showAtt

showAtt setAtt

繼承來的

temper height eye skin

showAtt

子類別新增的方法
showChildAtt

繼承

父類別的方法
被覆寫了

class Child



物件導向程式設計(OOP)

145

 多重繼承範例：

class Man:
(同前，略)

class Woman:
(同前，略)

class Child(Man, Woman):
(同前，略)

child1 = Child() #建立一個Child類別的物件叫child1
child1.showChildAtt()

#執行覆寫過父類別功能的setAtt方法
child1.setAtt('文靜','170cm','長睫毛','宗皮膚')
child1.showChildAtt()



休息一下~

146



物件導向練習：鏈結串列

147

 前面介紹過鏈結串列(Linked List)結構，我們使用物件
的方式來實現對它的操作。

 有一鏈結串列如圖：

 由許多節點(node)構成。

 須有依數值大小插入資料功能。

 須可刪除任一節點。

 可以顯示整個串列。



物件導向練習：鏈結串列

148

 我們把節點寫成一個類別(class)叫Node，有兩個屬性
(資料、下一個Node)，沒有類別方法：

class Node:
def __init__(self, data=0):

self.data = data   #資料
self.next = None #指向下一個節點位置

data next一個 Node



物件導向練習：鏈結串列

149

 插入一個節點的函式：

def insert_node(h):
p = Node(eval(input("Please input data: "))) #輸入資料並建立一個節點p
prev = h          #取得鏈結串列的起始節點
ptr = h.next #起始節點指向的下一個節點
flag = True
while ptr: #一直搜尋到節點指向為None為止

if ptr.data >= p.data: #在此插入新節點
prev.next = p #將前一個節點的指向改為此新節點
p.next = ptr #將前一個節點原來的指向放入新節點
flag = False
break

else:
prev = ptr #不是這個位置，繼續指向下一個節點
ptr = ptr.next

if flag:                #新節點的值是最大的，放在尾端
prev.next = p
p.next = None

input(">>>Insert OK, press Enter to continue.") 



物件導向練習：鏈結串列

150

 刪除一個節點的函式：
def delete_node(h):

d = eval(input("Please input data: ")) #輸入欲刪除的資料
prev = h #取得鏈結串列的起始節點
ptr = h.next #起始節點指向的下一個節點
if ptr is None:   #如果下一個節點的指向是None，表示這是空的鏈結串列

print(">>>Link list is Empty. ", end='')
else:

flag = True
while ptr: #一直搜尋到節點指向為None為止

if ptr.data == d:    #找到資料，刪除此節點
prev.next = ptr.next #將這個節點的指向交給前一個節點
print(f">>>data {d} deleted. ", end='')
flag = False
break

else:
prev = ptr #不是這個位置，繼續指向下一個節點
ptr = ptr.next

if flag: #無此資料在練結串列中
print(">>>No this data in Link list. ", end='')

input("Press Enter to continue.") 



物件導向練習：鏈結串列

151

 列出整個鏈結串列的函式：

def printall(h):
ptr = h.next #取得鏈結串列的起始節點
while ptr: #一直搜尋到節點指向為None為止

print(ptr.data, '-> ', end='') #印出該節點資料
ptr = ptr.next #繼續指向下一個節點

print('None') #印出結尾符號
input(">>>Press Enter to continue.")  



物件導向練習：鏈結串列

152

 用一個功能表來引導使用者操作：
if __name__ == '__main__':

head = Node()   #建立一個新的鏈結串列
while True:     #顯示功能表

print("\n---------------------------------")
print(" 1. Insert a data to Link list")
print(" 2. Delete a data from Link list")
print(" 3. Show Link list")
print(" 4. Quit")
print("---------------------------------")
try:

c = int(input("Please input your select: "))
if c == 1:

insert_node(head) #執行插入新節點
elif c == 2:

delete_node(head) #執行刪除一個節點
elif c == 3:

printall(head) #印出整個鏈結串列
elif c == 4:

os._exit(0) #結束程式
else:

print(">>>Please input 1 ~ 4")
except: #如果使用者的輸入無法轉換成整數的錯誤發生時

print(">>>Unknown select")



物件導向練習：二元樹

153

 前面介紹過樹(Tree)結構，我們是使用一個二維陣列
來表示的，現在我們使用物件的方式來實現對它的操
作。

 有一樹如圖：

 由許多節點(node)構成，

 除了資料不同，

 每個node結構

 都是相同的。

29

3415

453113



物件導向練習：二元樹

154

 我們把樹的節點寫成一個類別(class)叫Node，有三個
屬性(資料、左子樹節點、右子樹節點)：

class Node:
def __init__(self, data = None):

self.data = data     # 資料
self.left = None     # 左子節點
self.right = None    # 右子節點

data

left right

一個 Node



物件導向練習：二元樹

155

 對於Node我們再加入一些功能(類別方法)：

 insert：插入一個節點。

 inorderTraversal：中序走訪(LDR)印出整棵樹。

 lowestCommonAncestor：尋找最低共同祖先(LCA)。

inorderTraversal()

data

left right

insert()

lowestCommonAncestor()

一個Node 有三個屬性

有三個方法



物件導向練習：二元樹

156

 所以我們的class Node應該是這樣：

class Node:
def __init__(self, data = None):

self.data = data     # 資料
self.left = None     # 左子節點
self.right = None    # 右子節點

def insert(self, data):
：
：

def inorderTraversal(self, node):
：
：

def lowestCommonAncestor(self, root, p, q): 
：
：

都會用到遞迴，不熟
的同學先回頭去看看



物件導向練習：二元樹

157

 插入一個節點：

def insert(self, data):
if self.data:     #如果該節點已有值

if data < self.data:  #如果data比此節點值小
if self.left is None:   #左子節點為空值，在此插入data

self.left = Node(data)
else:

self.left.insert(data)  #否則繼續往左子節點探訪
elif data > self.data: #如果data比此節點值大

if self.right is None:  #右子節點為空值，在此插入data
self.right = Node(data)

else:
self.right.insert(data) #否則繼續往右子節點探訪

else:
print(data,"該節點已存在")  #二元樹不允許重複的值

else:  #該節點無資料，將資料插入本節點(只發生在空樹的根節點時)
self.data = data



物件導向練習：二元樹

158

 中序走訪(LDR)印出整棵樹：

# 中序走訪(Inorder traversal, Left->Data->Right, LDR)
def inorderTraversal(self, node):

res = []  #建立本次走訪後要回傳用的清單
if node: #如果傳入的不是空值

#繼續呼叫左子樹，直到傳回data
res = self.inorderTraversal(node.left)
#將此節點data加入res
res.append(node.data)
#繼續呼叫右子樹，直到傳回data
res = res + self.inorderTraversal(node.right)

return res



物件導向練習：二元樹

159

 把註解都拿掉，看來是不是很簡潔有力啊~

def inorderTraversal(self, node):
res = []
if node:

res = self.inorderTraversal(node.left)
res.append(node.data)
res = res + self.inorderTraversal(node.right)

return res



物件導向練習：LCA

160

 在樹的結構中，兩個點的所有共同祖先當中，離根最
遠、深度最深的那一個共同祖先，稱作「最低共同祖
先」(Lowest Common Ancestor：LCA)。

 如圖示：



物件導向練習：LCA

161

 對於我們的例子來說，31和45的LCA就是34，13和31

的LCA就是29。

29

3415

453113



物件導向練習：二元樹

162

 尋找最低共同祖先(LCA)：

def lowestCommonAncestor(self, node, p, q): 
if not node: #傳入的node為空節點，直接返回

return None
if node.data == p or node.data == q: #找到其中一個

return node #回傳此node
left = self.lowestCommonAncestor(node.left, p, q)
right = self.lowestCommonAncestor(node.right, p, q)
if right and left:  #在此node之下兩個都有找到

return node #回傳此node
#找不到，其中一個不再樹內，傳回在樹內的值
#若right為真則傳回right，否則傳回left
return right or left



物件導向練習：二元樹

163

 類別都定義好後，主程式部分就簡單了：

root = Node() #先建立根結點，一個空樹

nodeList = [29, 34, 15, 13, 31, 45]
for item in nodeList: #依清單順序插入各節點，將樹建立起來

root.insert(item)

print(root.inorderTraversal(root))   #中序(LDR)走訪整棵樹

node = root.lowestCommonAncestor(root, 13, 31)  #找LCA節點
print(node.data)    # 印出LCA點的data



物件導向練習：二元樹

164

 完整的程式：

class Node:
def __init__(self, data = None):

self.data = data     # 資料
self.left = None    # 左子節點
self.right = None    # 右子節點

# 插入一個Node
def insert(self, data):

if self.data:     #如果該節點已有值
if data < self.data: #如果data比此節點值小

if self.left is None:  #左子節點為空值，在此插入data
self.left = Node(data)

else:
self.left.insert(data)  #否則繼續往左子節點探訪

elif data > self.data: #如果data比此節點值大
if self.right is None:  #右子節點為空值，在此插入data

self.right = Node(data)
else:

self.right.insert(data) #否則繼續往右子節點探訪
else:

print(data,"該節點已存在") #二元樹不允許重複的值
else:  #該節點無資料，將資料插入本節點

self.data = data

# 中序走訪(Inorder traversal, Left->Data->Right, LDR)
def inorderTraversal(self, node):

res = []  #建立走訪後回傳用的清單
if node:

res = self.inorderTraversal(node.left)
res.append(node.data)
res = res + self.inorderTraversal(node.right)

return res

# 尋找最低共同祖先(LCA)
def lowestCommonAncestor(self, node, p, q): 

if not node:
return None

if node.data == p or node.data == q:
return node

left = self.lowestCommonAncestor(node.left, p, q)
right = self.lowestCommonAncestor(node.right, p, q)
if right and left:

return node
return right or left

# main
root = Node()  # 先建立根結點
nodeList = [29, 34, 15, 13, 31, 45]
for item in nodeList: # 依清單順序插入各節點

root.insert(item)

# 中序(LDR)走訪整棵樹
print(root.inorderTraversal(root))
# 找LCA節點
node = root.lowestCommonAncestor(root, 13, 45)
print(node.data)    # 印出LCA點的data



物件導向程式設計(OOP)

165

 物件導向還有很多的內容，我們就介紹到這邊，有興
趣的同學可以再去研究。

 經過漫長的學習，大家應該都學會基本的Python語言
運用了，多多實作就會更熟悉了，加油~



下課~

166


